Update app.py
Browse files
app.py
CHANGED
@@ -12,12 +12,10 @@ import os
|
|
12 |
import csv
|
13 |
import datetime
|
14 |
import zipfile
|
15 |
-
from gradio.routes import Request
|
16 |
|
17 |
-
#
|
18 |
ADMIN_KEY = "Diabetes_Detection"
|
19 |
|
20 |
-
# Device
|
21 |
device = torch.device("cpu")
|
22 |
|
23 |
# Load model
|
@@ -27,11 +25,11 @@ model.load_state_dict(torch.load("resnet50_dr_classifier.pth", map_location=devi
|
|
27 |
model.to(device)
|
28 |
model.eval()
|
29 |
|
30 |
-
# Grad-CAM
|
31 |
target_layer = model.layer4[-1]
|
32 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
33 |
|
34 |
-
#
|
35 |
transform = transforms.Compose([
|
36 |
transforms.Resize((224, 224)),
|
37 |
transforms.ToTensor(),
|
@@ -39,17 +37,17 @@ transform = transforms.Compose([
|
|
39 |
[0.229, 0.224, 0.225])
|
40 |
])
|
41 |
|
42 |
-
# Folders
|
43 |
image_folder = "collected_images"
|
44 |
os.makedirs(image_folder, exist_ok=True)
|
45 |
|
46 |
csv_log_path = "prediction_logs.csv"
|
47 |
if not os.path.exists(csv_log_path):
|
48 |
-
with open(csv_log_path,
|
49 |
writer = csv.writer(f)
|
50 |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
|
51 |
|
52 |
-
#
|
53 |
def predict_retinopathy(image):
|
54 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
55 |
img = image.convert("RGB").resize((224, 224))
|
@@ -81,7 +79,7 @@ def predict_retinopathy(image):
|
|
81 |
|
82 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
83 |
|
84 |
-
#
|
85 |
def download_csv():
|
86 |
return csv_log_path
|
87 |
|
@@ -94,14 +92,17 @@ def download_dataset_zip():
|
|
94 |
zipf.write(fpath, arcname=os.path.join("images", fname))
|
95 |
return zip_filename
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
100 |
|
101 |
-
#
|
102 |
with gr.Blocks() as demo:
|
103 |
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
|
104 |
|
|
|
|
|
105 |
with gr.Row():
|
106 |
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
107 |
cam_output = gr.Image(type="pil", label="Grad-CAM")
|
@@ -115,24 +116,16 @@ with gr.Blocks() as demo:
|
|
115 |
outputs=[cam_output, prediction_output]
|
116 |
)
|
117 |
|
118 |
-
# 🔒 Hidden admin section
|
119 |
with gr.Column(visible=False) as admin_section:
|
120 |
-
gr.Markdown("### 🔐
|
121 |
with gr.Row():
|
122 |
download_csv_btn = gr.Button("📄 Download CSV Log")
|
123 |
download_zip_btn = gr.Button("📦 Download Dataset ZIP")
|
124 |
csv_file = gr.File()
|
125 |
zip_file = gr.File()
|
126 |
|
127 |
-
#
|
128 |
-
|
129 |
-
fn=lambda req: gr.update(visible=True) if is_admin(req) else gr.update(visible=False),
|
130 |
-
inputs=[],
|
131 |
-
outputs=admin_section,
|
132 |
-
queue=False,
|
133 |
-
api_name=False,
|
134 |
-
request=True # ✅ Required to pass HTTP request into lambda
|
135 |
-
)
|
136 |
|
137 |
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
138 |
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
|
|
|
12 |
import csv
|
13 |
import datetime
|
14 |
import zipfile
|
|
|
15 |
|
16 |
+
# Admin secret
|
17 |
ADMIN_KEY = "Diabetes_Detection"
|
18 |
|
|
|
19 |
device = torch.device("cpu")
|
20 |
|
21 |
# Load model
|
|
|
25 |
model.to(device)
|
26 |
model.eval()
|
27 |
|
28 |
+
# Grad-CAM
|
29 |
target_layer = model.layer4[-1]
|
30 |
cam = GradCAM(model=model, target_layers=[target_layer])
|
31 |
|
32 |
+
# Preprocess
|
33 |
transform = transforms.Compose([
|
34 |
transforms.Resize((224, 224)),
|
35 |
transforms.ToTensor(),
|
|
|
37 |
[0.229, 0.224, 0.225])
|
38 |
])
|
39 |
|
40 |
+
# Folders & logs
|
41 |
image_folder = "collected_images"
|
42 |
os.makedirs(image_folder, exist_ok=True)
|
43 |
|
44 |
csv_log_path = "prediction_logs.csv"
|
45 |
if not os.path.exists(csv_log_path):
|
46 |
+
with open(csv_log_path, "w", newline="") as f:
|
47 |
writer = csv.writer(f)
|
48 |
writer.writerow(["timestamp", "image_filename", "prediction", "confidence"])
|
49 |
|
50 |
+
# Prediction
|
51 |
def predict_retinopathy(image):
|
52 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
53 |
img = image.convert("RGB").resize((224, 224))
|
|
|
79 |
|
80 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
81 |
|
82 |
+
# Downloads
|
83 |
def download_csv():
|
84 |
return csv_log_path
|
85 |
|
|
|
92 |
zipf.write(fpath, arcname=os.path.join("images", fname))
|
93 |
return zip_filename
|
94 |
|
95 |
+
def check_admin(query_str):
|
96 |
+
if f"admin={ADMIN_KEY}" in query_str:
|
97 |
+
return gr.update(visible=True)
|
98 |
+
return gr.update(visible=False)
|
99 |
|
100 |
+
# Gradio UI
|
101 |
with gr.Blocks() as demo:
|
102 |
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
|
103 |
|
104 |
+
url_input = gr.Textbox(visible=False) # Holds query string
|
105 |
+
|
106 |
with gr.Row():
|
107 |
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
108 |
cam_output = gr.Image(type="pil", label="Grad-CAM")
|
|
|
116 |
outputs=[cam_output, prediction_output]
|
117 |
)
|
118 |
|
|
|
119 |
with gr.Column(visible=False) as admin_section:
|
120 |
+
gr.Markdown("### 🔐 Admin Downloads (Private)")
|
121 |
with gr.Row():
|
122 |
download_csv_btn = gr.Button("📄 Download CSV Log")
|
123 |
download_zip_btn = gr.Button("📦 Download Dataset ZIP")
|
124 |
csv_file = gr.File()
|
125 |
zip_file = gr.File()
|
126 |
|
127 |
+
# Logic to reveal admin section
|
128 |
+
url_input.change(fn=check_admin, inputs=url_input, outputs=admin_section)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
131 |
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
|