Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,9 @@ from pytorch_grad_cam import GradCAM
|
|
8 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
10 |
|
11 |
-
import os
|
12 |
import csv
|
13 |
import datetime
|
14 |
-
import
|
15 |
-
|
16 |
-
# ✅ Admin key (hidden until typed)
|
17 |
-
ADMIN_KEY = "Diabetes_Detection"
|
18 |
|
19 |
# Set device
|
20 |
device = torch.device("cpu")
|
@@ -38,19 +34,21 @@ transform = transforms.Compose([
|
|
38 |
[0.229, 0.224, 0.225])
|
39 |
])
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
with open(
|
48 |
-
writer = csv.writer(
|
49 |
-
writer.writerow(
|
50 |
|
51 |
# Prediction function
|
52 |
def predict_retinopathy(image):
|
53 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
54 |
img = image.convert("RGB").resize((224, 224))
|
55 |
img_tensor = transform(img).unsqueeze(0).to(device)
|
56 |
|
@@ -67,75 +65,22 @@ def predict_retinopathy(image):
|
|
67 |
rgb_img_np = np.ascontiguousarray(rgb_img_np)
|
68 |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
|
69 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
70 |
-
cam_pil = Image.fromarray(cam_image)
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
image.save(image_path)
|
76 |
-
|
77 |
-
with open(csv_log_path, mode="a", newline="") as f:
|
78 |
-
writer = csv.writer(f)
|
79 |
-
writer.writerow([timestamp, image_filename, label, f"{confidence:.4f}"])
|
80 |
|
|
|
81 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
zip_filename = "dataset_bundle.zip"
|
95 |
-
with zipfile.ZipFile(zip_filename, "w") as zipf:
|
96 |
-
zipf.write(csv_log_path, arcname="prediction_logs.csv")
|
97 |
-
for fname in os.listdir(image_folder):
|
98 |
-
fpath = os.path.join(image_folder, fname)
|
99 |
-
zipf.write(fpath, arcname=os.path.join("images", fname))
|
100 |
-
return zip_filename
|
101 |
-
|
102 |
-
# UI
|
103 |
-
with gr.Blocks() as demo:
|
104 |
-
gr.Markdown("## 🧠 Diabetic Retinopathy Detection with Grad-CAM")
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
image_input = gr.Image(type="pil", label="Upload Retinal Image")
|
108 |
-
cam_output = gr.Image(type="pil", label="Grad-CAM Output")
|
109 |
-
|
110 |
-
prediction_output = gr.Text(label="Prediction")
|
111 |
-
run_button = gr.Button("Submit")
|
112 |
-
|
113 |
-
run_button.click(
|
114 |
-
fn=predict_retinopathy,
|
115 |
-
inputs=image_input,
|
116 |
-
outputs=[cam_output, prediction_output]
|
117 |
-
)
|
118 |
-
|
119 |
-
gr.Markdown("### 🔐 Admin Access (Rodiyah only)")
|
120 |
-
|
121 |
-
admin_key_input = gr.Text(label="Enter Admin Key", type="password", placeholder="Only Rodiyah knows this!")
|
122 |
-
unlock_button = gr.Button("Unlock Downloads")
|
123 |
-
|
124 |
-
with gr.Column(visible=False) as admin_panel:
|
125 |
-
gr.Markdown("### ✅ Download Panel (Private Access)")
|
126 |
-
with gr.Row():
|
127 |
-
download_csv_btn = gr.Button("📄 Download CSV Log")
|
128 |
-
download_zip_btn = gr.Button("📦 Download Full Dataset")
|
129 |
-
csv_file = gr.File()
|
130 |
-
zip_file = gr.File()
|
131 |
-
|
132 |
-
unlock_button.click(
|
133 |
-
fn=unlock_admin,
|
134 |
-
inputs=admin_key_input,
|
135 |
-
outputs=admin_panel
|
136 |
-
)
|
137 |
-
|
138 |
-
download_csv_btn.click(fn=download_csv, inputs=[], outputs=csv_file)
|
139 |
-
download_zip_btn.click(fn=download_dataset_zip, inputs=[], outputs=zip_file)
|
140 |
-
|
141 |
-
demo.launch()
|
|
|
8 |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
9 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
10 |
|
|
|
11 |
import csv
|
12 |
import datetime
|
13 |
+
import os
|
|
|
|
|
|
|
14 |
|
15 |
# Set device
|
16 |
device = torch.device("cpu")
|
|
|
34 |
[0.229, 0.224, 0.225])
|
35 |
])
|
36 |
|
37 |
+
# Logging setup
|
38 |
+
log_path = "prediction_logs.csv"
|
39 |
+
|
40 |
+
def log_prediction(filename, prediction, confidence):
|
41 |
+
timestamp = datetime.datetime.now().isoformat()
|
42 |
+
row = [timestamp, filename, prediction, f"{confidence:.4f}"]
|
43 |
|
44 |
+
print("⏺ Logging prediction:", row) # 🔍 Add this line
|
45 |
+
|
46 |
+
with open(log_path, mode='a', newline='') as file:
|
47 |
+
writer = csv.writer(file)
|
48 |
+
writer.writerow(row)
|
49 |
|
50 |
# Prediction function
|
51 |
def predict_retinopathy(image):
|
|
|
52 |
img = image.convert("RGB").resize((224, 224))
|
53 |
img_tensor = transform(img).unsqueeze(0).to(device)
|
54 |
|
|
|
65 |
rgb_img_np = np.ascontiguousarray(rgb_img_np)
|
66 |
grayscale_cam = cam(input_tensor=img_tensor, targets=[ClassifierOutputTarget(pred)])[0]
|
67 |
cam_image = show_cam_on_image(rgb_img_np, grayscale_cam, use_rgb=True)
|
|
|
68 |
|
69 |
+
# Logging
|
70 |
+
filename = getattr(image, "filename", "uploaded_image")
|
71 |
+
log_prediction(filename, label, confidence)
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
cam_pil = Image.fromarray(cam_image)
|
74 |
return cam_pil, f"{label} (Confidence: {confidence:.2f})"
|
75 |
|
76 |
+
# Gradio interface
|
77 |
+
gr.Interface(
|
78 |
+
fn=predict_retinopathy,
|
79 |
+
inputs=gr.Image(type="pil"),
|
80 |
+
outputs=[
|
81 |
+
gr.Image(type="pil", label="Grad-CAM"),
|
82 |
+
gr.Text(label="Prediction")
|
83 |
+
],
|
84 |
+
title="Diabetic Retinopathy Detection",
|
85 |
+
description="Upload a retinal image to classify DR and view Grad-CAM heatmap. All predictions are logged for analysis."
|
86 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|