aaappp7878's picture
Update app.py
c2bd534 verified
raw
history blame
54.2 kB
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
from scipy import ndimage, stats
# 加载多个检测模型
models = {
"model1": {
"name": "umm-maybe/AI-image-detector",
"processor": None,
"model": None,
"weight": 0.5
},
"model2": {
"name": "microsoft/resnet-50", # 通用图像分类模型
"processor": None,
"model": None,
"weight": 0.25
},
"model3": {
"name": "google/vit-base-patch16-224", # Vision Transformer模型
"processor": None,
"model": None,
"weight": 0.25
}
}
# 初始化模型
for key in models:
try:
models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
print(f"成功加载模型: {models[key]['name']}")
except Exception as e:
print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
models[key]["processor"] = None
models[key]["model"] = None
def process_model_output(model_info, outputs, probabilities):
"""处理不同模型的输出,统一返回AI生成概率"""
model_name = model_info["name"].lower()
# 针对不同模型的特殊处理
if "ai-image-detector" in model_name:
# umm-maybe/AI-image-detector模型特殊处理
# 检查标签
ai_label_idx = None
human_label_idx = None
for idx, label in model_info["model"].config.id2label.items():
label_lower = label.lower()
if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower:
ai_label_idx = idx
if "human" in label_lower or "real" in label_lower:
human_label_idx = idx
# 修正后的标签解释逻辑
if human_label_idx is not None:
# 如果预测为human,则AI概率应该低
ai_probability = 1 - float(probabilities[0][human_label_idx].item())
elif ai_label_idx is not None:
# 如果预测为AI,则AI概率应该高
ai_probability = float(probabilities[0][ai_label_idx].item())
else:
# 默认情况
ai_probability = 0.5
elif "resnet" in model_name:
# 通用图像分类模型,使用简单启发式方法
predicted_class_idx = outputs.logits.argmax(-1).item()
# 检查是否有与AI相关的类别
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
# 简单启发式:检查类别名称是否包含与AI生成相关的关键词
ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
for keyword in ai_keywords:
if keyword in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
# 如果没有明确的AI类别,返回中等概率
return 0.5
elif "vit" in model_name:
# Vision Transformer模型
predicted_class_idx = outputs.logits.argmax(-1).item()
# 同样检查类别名称
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
# 简单启发式:检查类别名称是否包含与AI生成相关的关键词
ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
for keyword in ai_keywords:
if keyword in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
# 如果没有明确的AI类别,返回中等概率
return 0.5
# 默认处理
predicted_class_idx = outputs.logits.argmax(-1).item()
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
if "ai" in predicted_class or "generated" in predicted_class or "fake" in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
else:
return 1 - float(probabilities[0][predicted_class_idx].item())
return ai_probability
def analyze_image_features(image):
"""分析图像特征"""
# 转换为OpenCV格式
img_array = np.array(image)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
else:
img_cv = img_array
features = {}
# 基本特征
features["width"] = image.width
features["height"] = image.height
features["aspect_ratio"] = image.width / max(1, image.height)
# 颜色分析
if len(img_array.shape) == 3:
features["avg_red"] = float(np.mean(img_array[:,:,0]))
features["avg_green"] = float(np.mean(img_array[:,:,1]))
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
# 颜色标准差 - 用于检测颜色分布是否自然
features["color_std"] = float(np.std([
features["avg_red"],
features["avg_green"],
features["avg_blue"]
]))
# 颜色局部变化 - 真实照片通常有更多局部颜色变化
local_color_variations = []
for i in range(0, img_array.shape[0]-10, 10):
for j in range(0, img_array.shape[1]-10, 10):
patch = img_array[i:i+10, j:j+10]
local_color_variations.append(np.std(patch))
features["local_color_variation"] = float(np.mean(local_color_variations))
# 颜色分布的自然度 - 真实照片的颜色分布更自然
r_hist, _ = np.histogram(img_array[:,:,0], bins=256, range=(0, 256))
g_hist, _ = np.histogram(img_array[:,:,1], bins=256, range=(0, 256))
b_hist, _ = np.histogram(img_array[:,:,2], bins=256, range=(0, 256))
# 计算颜色直方图的熵 - 真实照片通常熵值更高
r_entropy = stats.entropy(r_hist + 1e-10) # 添加小值避免log(0)
g_entropy = stats.entropy(g_hist + 1e-10)
b_entropy = stats.entropy(b_hist + 1e-10)
features["color_entropy"] = float((r_entropy + g_entropy + b_entropy) / 3)
# 边缘一致性分析
edges = cv2.Canny(img_cv, 100, 200)
features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
# 边缘自然度分析 - 真实照片的边缘通常更自然
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
edge_magnitude = np.sqrt(sobelx**2 + sobely**2)
features["edge_variance"] = float(np.var(edge_magnitude))
# 边缘方向分布 - 真实照片的边缘方向分布更自然
edge_direction = np.arctan2(sobely, sobelx) * 180 / np.pi
edge_dir_hist, _ = np.histogram(edge_direction[edge_magnitude > 30], bins=36, range=(-180, 180))
features["edge_direction_entropy"] = float(stats.entropy(edge_dir_hist + 1e-10))
# 纹理分析 - 使用灰度共生矩阵
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# 计算GLCM
distances = [5]
angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True)
# 计算GLCM属性
features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
features["texture_correlation"] = float(np.mean(graycoprops(glcm, 'correlation')[0]))
features["texture_energy"] = float(np.mean(graycoprops(glcm, 'energy')[0]))
features["texture_dissimilarity"] = float(np.mean(graycoprops(glcm, 'dissimilarity')[0]))
features["texture_ASM"] = float(np.mean(graycoprops(glcm, 'ASM')[0]))
# 局部二值模式 (LBP) - 分析微观纹理
try:
radius = 3
n_points = 8 * radius
lbp = local_binary_pattern(gray, n_points, radius, method='uniform')
lbp_hist, _ = np.histogram(lbp, bins=n_points + 2, range=(0, n_points + 2))
lbp_hist = lbp_hist.astype(float) / sum(lbp_hist)
features["lbp_entropy"] = float(stats.entropy(lbp_hist + 1e-10))
except:
# 如果LBP分析失败,不添加这个特征
pass
# 噪声分析
if len(img_array.shape) == 3:
blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
noise = cv2.absdiff(img_cv, blurred)
features["noise_level"] = float(np.mean(noise))
# 噪声分布 - 用于检测噪声是否自然
features["noise_std"] = float(np.std(noise))
# 噪声频谱分析 - 真实照片的噪声频谱更自然
noise_fft = np.fft.fft2(noise[:,:,0])
noise_fft_shift = np.fft.fftshift(noise_fft)
noise_magnitude = np.abs(noise_fft_shift)
features["noise_spectrum_std"] = float(np.std(noise_magnitude))
# 噪声的空间一致性 - AI生成图像的噪声空间分布通常不够自然
noise_blocks = []
block_size = 32
for i in range(0, noise.shape[0]-block_size, block_size):
for j in range(0, noise.shape[1]-block_size, block_size):
block = noise[i:i+block_size, j:j+block_size]
noise_blocks.append(np.mean(block))
features["noise_spatial_std"] = float(np.std(noise_blocks))
# 对称性分析 - AI生成图像通常有更高的对称性
if img_cv.shape[1] % 2 == 0: # 确保宽度是偶数
left_half = img_cv[:, :img_cv.shape[1]//2]
right_half = cv2.flip(img_cv[:, img_cv.shape[1]//2:], 1)
if left_half.shape == right_half.shape:
h_symmetry = 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255)
features["horizontal_symmetry"] = h_symmetry
if img_cv.shape[0] % 2 == 0: # 确保高度是偶数
top_half = img_cv[:img_cv.shape[0]//2, :]
bottom_half = cv2.flip(img_cv[img_cv.shape[0]//2:, :], 0)
if top_half.shape == bottom_half.shape:
v_symmetry = 1 - float(np.mean(cv2.absdiff(top_half, bottom_half)) / 255)
features["vertical_symmetry"] = v_symmetry
# 频率域分析 - 检测不自然的频率分布
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
f_transform = np.fft.fft2(gray)
f_shift = np.fft.fftshift(f_transform)
magnitude = np.log(np.abs(f_shift) + 1)
# 计算高频和低频成分的比例
h, w = magnitude.shape
center_h, center_w = h // 2, w // 2
# 低频区域 (中心区域)
low_freq_region = magnitude[center_h-h//8:center_h+h//8, center_w-w//8:center_w+w//8]
low_freq_mean = np.mean(low_freq_region)
# 高频区域 (边缘区域)
high_freq_mean = np.mean(magnitude) - low_freq_mean
features["freq_ratio"] = float(high_freq_mean / max(low_freq_mean, 0.001))
# 频率分布的自然度 - 真实照片通常有更自然的频率分布
freq_std = np.std(magnitude)
features["freq_std"] = float(freq_std)
# 频率分布的各向异性 - 真实照片的频率分布通常更各向异性
freq_blocks = []
for angle in range(0, 180, 20):
mask = np.zeros_like(magnitude)
cv2.ellipse(mask, (center_w, center_h), (w//2, h//2), angle, -10, 10, 1, -1)
freq_blocks.append(np.mean(magnitude * mask))
features["freq_anisotropy"] = float(np.std(freq_blocks))
# 尝试检测人脸
try:
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
features["face_count"] = len(faces)
if len(faces) > 0:
# 分析人脸特征
face_features = []
for (x, y, w, h) in faces:
face = img_cv[y:y+h, x:x+w]
# 皮肤质感分析
face_hsv = cv2.cvtColor(face, cv2.COLOR_BGR2HSV)
skin_mask = cv2.inRange(face_hsv, (0, 20, 70), (20, 150, 255))
skin_pixels = face[skin_mask > 0]
if len(skin_pixels) > 0:
face_features.append({
"skin_std": float(np.std(skin_pixels)),
"skin_local_contrast": float(np.mean(cv2.Laplacian(face, cv2.CV_64F))),
"face_symmetry": analyze_face_symmetry(face)
})
if face_features:
features["face_skin_std"] = np.mean([f["skin_std"] for f in face_features])
features["face_local_contrast"] = np.mean([f["skin_local_contrast"] for f in face_features])
features["face_symmetry"] = np.mean([f["face_symmetry"] for f in face_features])
# 面部微表情分析
for i, (x, y, w, h) in enumerate(faces):
face = gray[y:y+h, x:x+w]
# 分析面部纹理的局部变化
face_blocks = []
block_size = 8
for bi in range(0, face.shape[0]-block_size, block_size):
for bj in range(0, face.shape[1]-block_size, block_size):
block = face[bi:bi+block_size, bj:bj+block_size]
face_blocks.append(np.std(block))
if face_blocks:
features[f"face_{i}_texture_variation"] = float(np.std(face_blocks))
except:
# 如果人脸检测失败,不添加人脸特征
pass
# 分析物理一致性
physical_features = analyze_physical_consistency(img_cv)
features.update(physical_features)
# 分析细节连贯性
detail_features = analyze_detail_coherence(img_cv)
features.update(detail_features)
# 分析衣物细节
clothing_features = analyze_clothing_details(img_cv)
features.update(clothing_features)
# 分析手部和关节
extremity_features = analyze_extremities(img_cv)
features.update(extremity_features)
return features
def analyze_face_symmetry(face):
"""分析人脸对称性"""
if face.shape[1] % 2 == 0: # 确保宽度是偶数
left_half = face[:, :face.shape[1]//2]
right_half = cv2.flip(face[:, face.shape[1]//2:], 1)
if left_half.shape == right_half.shape:
return 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255)
return 0.5 # 默认值
def analyze_physical_consistency(image):
"""分析图像中的物理一致性"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 光影一致性分析
# 检测亮度梯度
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)
gradient_direction = np.arctan2(sobely, sobelx)
# 分析梯度方向的一致性 - 真实照片的光影梯度方向更一致
# 将图像分成块,分析每个块的主要梯度方向
block_size = 32
gradient_dirs = []
for i in range(0, gray.shape[0]-block_size, block_size):
for j in range(0, gray.shape[1]-block_size, block_size):
block_gradient = gradient_direction[i:i+block_size, j:j+block_size]
block_magnitude = gradient_magnitude[i:i+block_size, j:j+block_size]
# 只考虑梯度幅值较大的像素
significant_gradients = block_gradient[block_magnitude > np.mean(block_magnitude)]
if len(significant_gradients) > 0:
# 计算主要方向
hist, _ = np.histogram(significant_gradients, bins=8, range=(-np.pi, np.pi))
main_dir = np.argmax(hist)
gradient_dirs.append(main_dir)
if gradient_dirs:
# 计算主要方向的一致性
hist, _ = np.histogram(gradient_dirs, bins=8, range=(0, 8))
features["light_direction_consistency"] = float(np.max(hist) / max(sum(hist), 1))
# 透视一致性分析
# 使用霍夫变换检测直线
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=50, minLineLength=50, maxLineGap=10)
if lines is not None and len(lines) > 1:
# 分析消失点
vanishing_points = []
for i in range(len(lines)):
for j in range(i+1, len(lines)):
x1, y1, x2, y2 = lines[i][0]
x3, y3, x4, y4 = lines[j][0]
# 计算两条线的交点(可能的消失点)
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
if abs(d) > 0.001: # 避免平行线
px = ((x1*y2 - y1*x2)*(x3-x4) - (x1-x2)*(x3*y4 - y3*x4)) / d
py = ((x1*y2 - y1*x2)*(y3-y4) - (y1-y2)*(x3*y4 - y3*x4)) / d
# 只考虑图像范围内或附近的交点
img_diag = np.sqrt(gray.shape[0]**2 + gray.shape[1]**2)
if -img_diag < px < 2*gray.shape[1] and -img_diag < py < 2*gray.shape[0]:
vanishing_points.append((px, py))
if vanishing_points:
# 分析消失点的聚集程度 - 真实照片的消失点通常更聚集
vp_x = [p[0] for p in vanishing_points]
vp_y = [p[1] for p in vanishing_points]
features["perspective_consistency"] = float(1 / (1 + np.std(vp_x) + np.std(vp_y)))
except:
# 如果分析失败,不添加物理一致性特征
pass
return features
def analyze_detail_coherence(image):
"""分析图像细节的连贯性"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 多尺度细节分析
scales = [3, 5, 9]
detail_levels = []
for scale in scales:
# 使用不同尺度的拉普拉斯算子提取细节
laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=scale)
abs_laplacian = np.abs(laplacian)
detail_levels.append(np.mean(abs_laplacian))
# 计算细节随尺度变化的一致性 - 真实照片的细节随尺度变化更自然
if len(detail_levels) > 1:
features["detail_scale_consistency"] = float(np.std(detail_levels) / max(np.mean(detail_levels), 0.001))
# 分析图像不同区域的细节一致性
block_size = 64
detail_blocks = []
for i in range(0, gray.shape[0]-block_size, block_size):
for j in range(0, gray.shape[1]-block_size, block_size):
block = gray[i:i+block_size, j:j+block_size]
# 计算块的细节水平
block_laplacian = cv2.Laplacian(block, cv2.CV_64F)
detail_blocks.append(np.mean(np.abs(block_laplacian)))
if detail_blocks:
# 计算细节分布的均匀性 - AI生成图像的细节分布通常不够均匀
features["detail_spatial_std"] = float(np.std(detail_blocks))
features["detail_spatial_entropy"] = float(stats.entropy(detail_blocks + 1e-10))
# 边缘过渡分析
edges = cv2.Canny(gray, 50, 150)
dilated = cv2.dilate(edges, np.ones((3,3), np.uint8))
edge_transition = cv2.absdiff(dilated, edges)
# 计算边缘过渡区域的特性 - 真实照片的边缘过渡更自然
if np.sum(edge_transition) > 0:
transition_values = gray[edge_transition > 0]
if len(transition_values) > 0:
features["edge_transition_std"] = float(np.std(transition_values))
except:
# 如果分析失败,不添加细节连贯性特征
pass
return features
def analyze_clothing_details(image):
"""分析衣物细节的自然度"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 使用Canny边缘检测
edges = cv2.Canny(gray, 50, 150)
# 使用霍夫变换检测直线
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=50, minLineLength=50, maxLineGap=10)
if lines is not None:
# 计算直线的角度分布
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
if x2 - x1 != 0: # 避免除以零
angle = np.arctan((y2 - y1) / (x2 - x1)) * 180 / np.pi
angles.append(angle)
if angles:
# 计算角度的标准差 - AI生成的衣物褶皱通常角度分布不自然
features["clothing_angle_std"] = float(np.std(angles))
# 计算角度的直方图 - 检查是否有过多相似角度(AI生成特征)
hist, _ = np.histogram(angles, bins=18, range=(-90, 90))
max_count = np.max(hist)
total_count = np.sum(hist)
features["clothing_angle_uniformity"] = float(max_count / max(total_count, 1))
# 分析纹理的一致性
# 将图像分成小块,计算每个块的纹理特征
block_size = 32
h, w = gray.shape
texture_variations = []
for i in range(0, h-block_size, block_size):
for j in range(0, w-block_size, block_size):
block = gray[i:i+block_size, j:j+block_size]
# 计算局部LBP特征或简单的方差
texture_variations.append(np.var(block))
if texture_variations:
# 计算纹理变化的标准差 - 真实衣物纹理变化更自然
features["clothing_texture_std"] = float(np.std(texture_variations))
# 计算纹理变化的均值 - AI生成的衣物纹理通常变化较小
features["clothing_texture_mean"] = float(np.mean(texture_variations))
# 计算纹理变化的熵 - 真实衣物纹理变化的熵更高
features["clothing_texture_entropy"] = float(stats.entropy(texture_variations + 1e-10))
# 褶皱分析 - 使用形态学操作提取可能的褶皱
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# 寻找轮廓
contours, _ = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 分析轮廓的复杂度
if contours:
contour_complexities = []
for contour in contours:
area = cv2.contourArea(contour)
if area > 100: # 忽略太小的轮廓
perimeter = cv2.arcLength(contour, True)
complexity = perimeter / max(np.sqrt(area), 1)
contour_complexities.append(complexity)
if contour_complexities:
features["clothing_contour_complexity"] = float(np.mean(contour_complexities))
features["clothing_contour_std"] = float(np.std(contour_complexities))
except:
# 如果分析失败,不添加衣物特征
pass
return features
def analyze_extremities(image):
"""分析手指、脚趾等末端细节"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 使用形态学操作提取可能的手部区域
_, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY)
kernel = np.ones((5,5), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# 寻找轮廓
contours, _ = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 分析轮廓的复杂度
if contours:
# 计算轮廓的周长与面积比 - 手指等细节会增加这个比值
perimeter_area_ratios = []
for contour in contours:
area = cv2.contourArea(contour)
if area > 100: # 忽略太小的轮廓
perimeter = cv2.arcLength(contour, True)
ratio = perimeter / max(area, 1)
perimeter_area_ratios.append(ratio)
if perimeter_area_ratios:
features["extremity_perimeter_area_ratio"] = float(np.mean(perimeter_area_ratios))
# 计算凸包缺陷 - 手指之间的间隙会产生凸包缺陷
defect_depths = []
for contour in contours:
if len(contour) > 5: # 需要足够多的点来计算凸包
hull = cv2.convexHull(contour, returnPoints=False)
if len(hull) > 3: # 需要至少4个点来计算凸包缺陷
try:
defects = cv2.convexityDefects(contour, hull)
if defects is not None:
for i in range(defects.shape[0]):
_, _, _, depth = defects[i, 0]
defect_depths.append(depth)
except:
pass
if defect_depths:
features["extremity_defect_depth_mean"] = float(np.mean(defect_depths))
features["extremity_defect_depth_std"] = float(np.std(defect_depths))
# 分析缺陷的分布 - 真实手指的缺陷分布更自然
defect_hist, _ = np.histogram(defect_depths, bins=10)
features["extremity_defect_entropy"] = float(stats.entropy(defect_hist + 1e-10))
# 分析轮廓的曲率变化 - 真实手指的曲率变化更自然
curvature_variations = []
for contour in contours:
if len(contour) > 20: # 需要足够多的点来计算曲率
# 简化轮廓以减少噪声
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# 计算相邻点之间的角度变化
angles = []
for i in range(len(approx)):
p1 = approx[i][0]
p2 = approx[(i+1) % len(approx)][0]
p3 = approx[(i+2) % len(approx)][0]
# 计算两个向量之间的角度
v1 = p2 - p1
v2 = p3 - p2
if np.linalg.norm(v1) > 0 and np.linalg.norm(v2) > 0:
cos_angle = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
cos_angle = np.clip(cos_angle, -1.0, 1.0) # 确保在有效范围内
angle = np.arccos(cos_angle)
angles.append(angle)
if angles:
curvature_variations.append(np.std(angles))
if curvature_variations:
features["extremity_curvature_std"] = float(np.mean(curvature_variations))
except:
# 如果分析失败,不添加末端特征
pass
return features
def check_ai_specific_features(image_features):
"""检查AI生成图像的典型特征,增强对最新AI模型的检测能力"""
ai_score = 0
ai_signs = []
# 增加对微观纹理的分析权重
if "lbp_entropy" in image_features:
if image_features["lbp_entropy"] < 2.0:
ai_score += 0.4 # 提高权重
ai_signs.append("微观纹理熵极低,典型AI生成特征")
elif image_features["lbp_entropy"] < 3.0:
ai_score += 0.3
ai_signs.append("微观纹理熵异常低")
# 增加对频率分布各向异性的分析权重
if "freq_anisotropy" in image_features:
if image_features["freq_anisotropy"] < 0.05:
ai_score += 0.4 # 提高权重
ai_signs.append("频率分布各向异性极低,典型AI生成特征")
elif image_features["freq_anisotropy"] < 0.5:
ai_score += 0.3
ai_signs.append("频率分布各向异性异常低")
# 增加对细节一致性的分析
if "detail_scale_consistency" in image_features and "detail_spatial_std" in image_features:
if image_features["detail_scale_consistency"] < 0.2 and image_features["detail_spatial_std"] < 5:
ai_score += 0.3
ai_signs.append("细节一致性异常,典型AI生成特征")
# 检查对称性 - AI生成图像通常对称性高
if "horizontal_symmetry" in image_features and "vertical_symmetry" in image_features:
avg_symmetry = (image_features["horizontal_symmetry"] + image_features["vertical_symmetry"]) / 2
if avg_symmetry > 0.8:
ai_score += 0.15
ai_signs.append("图像对称性异常高")
elif avg_symmetry > 0.7:
ai_score += 0.1
ai_signs.append("图像对称性较高")
# 检查纹理相关性 - AI生成图像通常纹理相关性高
if "texture_correlation" in image_features:
if image_features["texture_correlation"] > 0.95: # 提高阈值
ai_score += 0.15
ai_signs.append("纹理相关性异常高")
elif image_features["texture_correlation"] > 0.9:
ai_score += 0.1
ai_signs.append("纹理相关性较高")
# 检查边缘与噪声的关系 - AI生成图像通常边缘清晰但噪声不自然
if "edge_density" in image_features and "noise_level" in image_features:
edge_noise_ratio = image_features["edge_density"] / max(image_features["noise_level"], 0.001)
if edge_noise_ratio < 0.01:
ai_score += 0.15
ai_signs.append("边缘与噪声分布不自然")
# 检查颜色平滑度 - AI生成图像通常颜色过渡更平滑
if "color_std" in image_features and image_features["color_std"] < 10:
ai_score += 0.1
ai_signs.append("颜色过渡异常平滑")
# 检查颜色熵 - AI生成图像通常颜色熵较低
if "color_entropy" in image_features and image_features["color_entropy"] < 5:
ai_score += 0.15
ai_signs.append("颜色分布熵值异常低")
# 检查纹理能量 - AI生成图像通常纹理能量分布不自然
if "texture_energy" in image_features and image_features["texture_energy"] < 0.01:
ai_score += 0.15
ai_signs.append("纹理能量分布不自然")
# 检查频率比例 - AI生成图像通常频率分布不自然
if "freq_ratio" in image_features:
if image_features["freq_ratio"] < 0.1 or image_features["freq_ratio"] > 2.0:
ai_score += 0.1
ai_signs.append("频率分布不自然")
# 检查噪声频谱 - 真实照片的噪声频谱更自然
if "noise_spectrum_std" in image_features and image_features["noise_spectrum_std"] < 1000:
ai_score += 0.15
ai_signs.append("噪声频谱异常规则")
# 检查噪声空间分布 - 真实照片的噪声空间分布更自然
if "noise_spatial_std" in image_features and image_features["noise_spatial_std"] < 0.5:
ai_score += 0.15
ai_signs.append("噪声空间分布异常均匀")
# 检查细节尺度一致性 - AI生成图像的细节尺度一致性通常不够自然
if "detail_scale_consistency" in image_features and image_features["detail_scale_consistency"] < 0.2:
ai_score += 0.15
ai_signs.append("细节尺度变化异常均匀")
# 检查细节空间分布 - AI生成图像的细节空间分布通常不够自然
if "detail_spatial_std" in image_features and image_features["detail_spatial_std"] < 5:
ai_score += 0.15
ai_signs.append("细节空间分布异常均匀")
# 检查细节空间熵 - AI生成图像的细节空间熵通常较低
if "detail_spatial_entropy" in image_features and image_features["detail_spatial_entropy"] < 1.5:
ai_score += 0.15
ai_signs.append("细节空间熵异常低")
# 检查边缘过渡 - AI生成图像的边缘过渡通常不够自然
if "edge_transition_std" in image_features and image_features["edge_transition_std"] < 10:
ai_score += 0.15
ai_signs.append("边缘过渡异常均匀")
# 检查光影一致性 - AI生成图像的光影一致性通常过高
if "light_direction_consistency" in image_features and image_features["light_direction_consistency"] > 0.7:
ai_score += 0.15
ai_signs.append("光影方向一致性异常高")
# 检查透视一致性 - AI生成图像的透视一致性通常过高
if "perspective_consistency" in image_features and image_features["perspective_consistency"] > 0.7:
ai_score += 0.15
ai_signs.append("透视一致性异常高")
# 检查人脸特征 - AI生成的人脸通常有特定特征
if "face_symmetry" in image_features and image_features["face_symmetry"] > 0.8:
ai_score += 0.15
ai_signs.append("人脸对称性异常高")
if "face_skin_std" in image_features and image_features["face_skin_std"] < 10:
ai_score += 0.2
ai_signs.append("皮肤质感异常均匀")
# 检查面部纹理变化 - AI生成的面部纹理变化通常不够自然
face_texture_keys = [k for k in image_features.keys() if k.startswith("face_") and k.endswith("_texture_variation")]
if face_texture_keys:
face_texture_variations = [image_features[k] for k in face_texture_keys]
if np.mean(face_texture_variations) < 5:
ai_score += 0.2
ai_signs.append("面部纹理变化异常均匀")
# 检查衣物特征 - AI生成的衣物通常有特定问题
if "clothing_angle_uniformity" in image_features and image_features["clothing_angle_uniformity"] > 0.3:
ai_score += 0.2
ai_signs.append("衣物褶皱角度分布不自然")
if "clothing_texture_std" in image_features and image_features["clothing_texture_std"] < 100:
ai_score += 0.15
ai_signs.append("衣物纹理变化异常均匀")
if "clothing_texture_entropy" in image_features and image_features["clothing_texture_entropy"] < 1.5:
ai_score += 0.15
ai_signs.append("衣物纹理熵异常低")
if "clothing_contour_complexity" in image_features and image_features["clothing_contour_complexity"] < 5:
ai_score += 0.15
ai_signs.append("衣物轮廓复杂度异常低")
# 检查手部特征 - AI生成的手部通常有特定问题
if "extremity_perimeter_area_ratio" in image_features:
if image_features["extremity_perimeter_area_ratio"] < 0.05:
ai_score += 0.2
ai_signs.append("手部/末端轮廓异常平滑")
if "extremity_defect_depth_std" in image_features and image_features["extremity_defect_depth_std"] < 10:
ai_score += 0.15
ai_signs.append("手指间隙异常均匀")
if "extremity_defect_entropy" in image_features and image_features["extremity_defect_entropy"] < 1.0:
ai_score += 0.15
ai_signs.append("手指间隙分布熵异常低")
if "extremity_curvature_std" in image_features and image_features["extremity_curvature_std"] < 0.2:
ai_score += 0.15
ai_signs.append("手部曲率变化异常均匀")
# 特别关注最新AI模型的特征组合
# 当多个特征同时出现时,这是强有力的AI生成证据
ai_feature_count = len(ai_signs)
if ai_feature_count >= 5: # 如果检测到多个AI特征
ai_score = max(ai_score, 0.9) # 确保AI分数很高
elif ai_feature_count >= 3:
ai_score = max(ai_score, 0.7)
return min(ai_score, 1.0), ai_signs
def detect_beauty_filter_signs(image_features):
"""检测美颜滤镜痕迹"""
beauty_score = 0
beauty_signs = []
# 检查皮肤质感
if "face_skin_std" in image_features:
if image_features["face_skin_std"] < 15:
beauty_score += 0.3
beauty_signs.append("皮肤质感过于均匀,典型美颜特征")
elif image_features["face_skin_std"] < 25:
beauty_score += 0.2
beauty_signs.append("皮肤质感较为均匀,可能使用了美颜")
# 检查局部对比度 - 美颜通常会降低局部对比度
if "face_local_contrast" in image_features:
if image_features["face_local_contrast"] < 5:
beauty_score += 0.2
beauty_signs.append("面部局部对比度低,典型美颜特征")
# 检查边缘平滑度 - 美颜通常会平滑边缘
if "edge_density" in image_features:
if image_features["edge_density"] < 0.03:
beauty_score += 0.2
beauty_signs.append("边缘过于平滑,典型美颜特征")
elif image_features["edge_density"] < 0.05:
beauty_score += 0.1
beauty_signs.append("边缘较为平滑,可能使用了美颜")
# 检查噪点 - 美颜通常会减少噪点
if "noise_level" in image_features:
if image_features["noise_level"] < 1.0:
beauty_score += 0.2
beauty_signs.append("噪点异常少,典型美颜特征")
elif image_features["noise_level"] < 2.0:
beauty_score += 0.1
beauty_signs.append("噪点较少,可能使用了美颜")
# 检查人脸对称性 - 美颜通常会增加对称性
if "face_symmetry" in image_features:
if image_features["face_symmetry"] > 0.8:
beauty_score += 0.2
beauty_signs.append("面部对称性异常高,典型美颜特征")
elif image_features["face_symmetry"] > 0.7:
beauty_score += 0.1
beauty_signs.append("面部对称性较高,可能使用了美颜")
# 检查面部纹理变化 - 美颜通常会使面部纹理更均匀
face_texture_keys = [k for k in image_features.keys() if k.startswith("face_") and k.endswith("_texture_variation")]
if face_texture_keys:
face_texture_variations = [image_features[k] for k in face_texture_keys]
if np.mean(face_texture_variations) < 10:
beauty_score += 0.2
beauty_signs.append("面部纹理变化异常均匀,典型美颜特征")
# 检查边缘过渡 - 美颜通常会使边缘过渡更平滑
if "edge_transition_std" in image_features and image_features["edge_transition_std"] < 15:
beauty_score += 0.2
beauty_signs.append("边缘过渡异常平滑,典型美颜特征")
return min(beauty_score, 1.0), beauty_signs
def detect_photoshop_signs(image_features):
"""检测图像中的PS痕迹"""
ps_score = 0
ps_signs = []
# 检查皮肤质感
if "texture_homogeneity" in image_features:
if image_features["texture_homogeneity"] > 0.4:
ps_score += 0.2
ps_signs.append("皮肤质感过于均匀")
elif image_features["texture_homogeneity"] > 0.3:
ps_score += 0.1
ps_signs.append("皮肤质感较为均匀")
# 检查边缘不自然
if "edge_density" in image_features:
if image_features["edge_density"] < 0.01:
ps_score += 0.2
ps_signs.append("边缘过于平滑")
elif image_features["edge_density"] < 0.03:
ps_score += 0.1
ps_signs.append("边缘较为平滑")
# 检查颜色不自然
if "color_std" in image_features:
if image_features["color_std"] > 50:
ps_score += 0.2
ps_signs.append("颜色分布极不自然")
elif image_features["color_std"] > 30:
ps_score += 0.1
ps_signs.append("颜色分布略不自然")
# 检查噪点不一致
if "noise_level" in image_features and "noise_std" in image_features:
noise_ratio = image_features["noise_std"] / max(image_features["noise_level"], 0.001)
if noise_ratio < 0.5:
ps_score += 0.2
ps_signs.append("噪点分布不自然")
elif noise_ratio < 0.7:
ps_score += 0.1
ps_signs.append("噪点分布略不自然")
# 检查频率分布不自然
if "freq_ratio" in image_features:
if image_features["freq_ratio"] < 0.2:
ps_score += 0.2
ps_signs.append("频率分布不自然,可能有过度模糊处理")
elif image_features["freq_ratio"] > 2.0:
ps_score += 0.2
ps_signs.append("频率分布不自然,可能有过度锐化处理")
# 检查细节不一致
if "detail_spatial_std" in image_features and image_features["detail_spatial_std"] > 50:
ps_score += 0.2
ps_signs.append("图像细节分布不一致,可能有局部修饰")
# 检查边缘过渡不自然
if "edge_transition_std" in image_features:
if image_features["edge_transition_std"] > 50:
ps_score += 0.2
ps_signs.append("边缘过渡不自然,可能有选区修饰")
elif image_features["edge_transition_std"] < 5:
ps_score += 0.2
ps_signs.append("边缘过渡过于平滑,可能有过度修饰")
return min(ps_score, 1.0), ps_signs
# 在这里添加get_detailed_analysis函数
def get_detailed_analysis(ai_probability, ps_score, beauty_score, ps_signs, ai_signs, beauty_signs, valid_models_count, ai_feature_score, image_features=None):
"""提供更详细的分析结果,使用二级分类框架,优先考虑AI特征分析"""
# 根据有效模型数量调整置信度描述
confidence_prefix = ""
if valid_models_count >= 3:
confidence_prefix = "极高置信度:"
elif valid_models_count == 2:
confidence_prefix = "高置信度:"
elif valid_models_count == 1:
confidence_prefix = "中等置信度:"
# 特征与模型判断严重不一致时的处理
if ai_feature_score > 0.8 and ai_probability < 0.6:
ai_probability = max(0.8, ai_probability) # 当AI特征分数非常高时,覆盖模型判断
category = confidence_prefix + "AI生成图像(基于特征分析)"
description = "基于多种典型AI特征分析,该图像很可能是AI生成的,尽管模型判断结果不确定。"
main_category = "AI生成"
elif ai_feature_score > 0.6 and ai_probability < 0.5:
ai_probability = max(0.7, ai_probability) # 当AI特征分数高时,提高AI概率
# 特定关键特征的硬性覆盖
if image_features is not None:
if "lbp_entropy" in image_features and image_features["lbp_entropy"] < 2.0:
if "freq_anisotropy" in image_features and image_features["freq_anisotropy"] < 0.05:
# 当微观纹理熵极低且频率分布各向异性极低时,几乎可以确定是AI生成
ai_probability = 0.95
category = confidence_prefix + "AI生成图像(确定)"
description = "检测到多个决定性AI生成特征,该图像几乎可以确定是AI生成的。"
main_category = "AI生成"
# 添加具体的PS痕迹描述
if ps_signs:
ps_details = "检测到的修图痕迹:" + "、".join(ps_signs)
else:
ps_details = "未检测到明显的修图痕迹。"
# 添加AI特征描述
if ai_signs:
ai_details = "检测到的AI特征:" + "、".join(ai_signs)
else:
ai_details = "未检测到明显的AI生成特征。"
# 添加美颜特征描述
if beauty_signs:
beauty_details = "检测到的美颜特征:" + "、".join(beauty_signs)
else:
beauty_details = "未检测到明显的美颜特征。"
return category, description, ps_details, ai_details, beauty_details, main_category
# 第一级分类:AI生成 vs 真人照片
if ai_probability > 0.6: # 降低AI判定阈值,提高AI检出率
category = confidence_prefix + "AI生成图像"
description = "图像很可能是由AI完全生成,几乎没有真人照片的特征。"
main_category = "AI生成"
else:
# 第二级分类:真实素人 vs 修图痕迹明显
combined_edit_score = max(ps_score, beauty_score) # 取PS和美颜中的较高分
if combined_edit_score > 0.5:
category = confidence_prefix + "真人照片,修图痕迹明显"
description = "图像基本是真人照片,但经过了明显的后期处理或美颜,修饰痕迹明显。"
main_category = "真人照片-修图明显"
else:
category = confidence_prefix + "真实素人照片"
description = "图像很可能是未经大量处理的真人照片,保留了自然的细节和特征。"
main_category = "真人照片-素人"
# 处理边界情况 - 当AI概率和修图分数都很高时
if ai_probability > 0.45 and combined_edit_score > 0.7:
# 这是一个边界情况,可能是高度修图的真人照片,也可能是AI生成的
category = confidence_prefix + "真人照片,修图痕迹明显(也可能是AI生成)"
description = "图像可能是真人照片经过大量后期处理,也可能是AI生成图像。由于现代AI技术与高度修图效果相似,难以完全区分。"
main_category = "真人照片-修图明显"
# 添加具体的PS痕迹描述
if ps_signs:
ps_details = "检测到的修图痕迹:" + "、".join(ps_signs)
else:
ps_details = "未检测到明显的修图痕迹。"
# 添加AI特征描述
if ai_signs:
ai_details = "检测到的AI特征:" + "、".join(ai_signs)
else:
ai_details = "未检测到明显的AI生成特征。"
# 添加美颜特征描述
if beauty_signs:
beauty_details = "检测到的美颜特征:" + "、".join(beauty_signs)
else:
beauty_details = "未检测到明显的美颜特征。"
return category, description, ps_details, ai_details, beauty_details, main_category
def detect_ai_image(image):
"""主检测函数"""
if image is None:
return {"error": "未提供图像"}
results = {}
valid_models = 0
weighted_ai_probability = 0
# 使用每个模型进行预测
for key, model_info in models.items():
if model_info["processor"] is not None and model_info["model"] is not None:
try:
# 处理图像
inputs = model_info["processor"](images=image, return_tensors="pt")
with torch.no_grad():
outputs = model_info["model"](**inputs)
# 获取概率
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# 使用适配器处理不同模型的输出
ai_probability = process_model_output(model_info, outputs, probabilities)
# 添加到结果
predicted_class_idx = outputs.logits.argmax(-1).item()
results[key] = {
"model_name": model_info["name"],
"ai_probability": ai_probability,
"predicted_class": model_info["model"].config.id2label[predicted_class_idx]
}
# 累加加权概率
weighted_ai_probability += ai_probability * model_info["weight"]
valid_models += 1
except Exception as e:
results[key] = {
"model_name": model_info["name"],
"error": str(e)
}
# 计算最终加权概率
if valid_models > 0:
final_ai_probability = weighted_ai_probability / sum(m["weight"] for k, m in models.items() if m["processor"] is not None and m["model"] is not None)
else:
return {"error": "所有模型加载失败"}
# 分析图像特征
image_features = analyze_image_features(image)
# 检查AI特定特征
ai_feature_score, ai_signs = check_ai_specific_features(image_features)
# 分析PS痕迹
ps_score, ps_signs = detect_photoshop_signs(image_features)
# 分析美颜痕迹
beauty_score, beauty_signs = detect_beauty_filter_signs(image_features)
# 应用特征权重调整AI概率
adjusted_probability = final_ai_probability
# 提高AI特征分数的权重
if ai_feature_score > 0.8: # 当AI特征非常明显时
adjusted_probability = max(adjusted_probability, 0.8) # 大幅提高AI概率
elif ai_feature_score > 0.6:
adjusted_probability = max(adjusted_probability, 0.7)
elif ai_feature_score > 0.4:
adjusted_probability = max(adjusted_probability, 0.6)
# 特别关注关键AI特征
key_ai_features_count = 0
# 检查微观纹理熵 - 这是AI生成的强力指标
if "lbp_entropy" in image_features and image_features["lbp_entropy"] < 2.5:
key_ai_features_count += 1
adjusted_probability += 0.1
# 检查频率分布各向异性 - 这是AI生成的强力指标
if "freq_anisotropy" in image_features and image_features["freq_anisotropy"] < 0.1:
key_ai_features_count += 1
adjusted_probability += 0.1
# 检查细节空间分布 - 这是AI生成的强力指标
if "detail_spatial_std" in image_features and image_features["detail_spatial_std"] < 5:
key_ai_features_count += 1
adjusted_probability += 0.1
# 如果多个关键AI特征同时存在,这是强有力的AI生成证据
if key_ai_features_count >= 2:
adjusted_probability = max(adjusted_probability, 0.7)
# 降低美颜特征对AI判断的影响
# 即使美颜分数高,如果AI特征也明显,仍应判定为AI生成
if beauty_score > 0.6 and ai_feature_score > 0.7:
# 不再降低AI概率,而是保持较高的AI概率
pass
# 如果检测到衣物或手部异常,大幅提高AI概率
if "clothing_angle_uniformity" in image_features and image_features["clothing_angle_uniformity"] > 0.3:
adjusted_probability = max(adjusted_probability, 0.7)
if "extremity_perimeter_area_ratio" in image_features and image_features["extremity_perimeter_area_ratio"] < 0.05:
adjusted_probability = max(adjusted_probability, 0.7)
# 确保概率在0-1范围内
adjusted_probability = min(1.0, max(0.0, adjusted_probability))
# 获取详细分析
category, description, ps_details, ai_details, beauty_details, main_category = get_detailed_analysis(
adjusted_probability, ps_score, beauty_score, ps_signs, ai_signs, beauty_signs, valid_models, ai_feature_score
)
# 构建最终结果
final_result = {
"ai_probability": adjusted_probability,
"original_ai_probability": final_ai_probability,
"ps_score": ps_score,
"beauty_score": beauty_score,
"ai_feature_score": ai_feature_score,
"category": category,
"main_category": main_category,
"description": description,
"ps_details": ps_details,
"ai_details": ai_details,
"beauty_details": beauty_details,
"individual_model_results": results,
"features": image_features
}
# 返回两个值:JSON结果和Label数据
label_data = {main_category: 1.0}
return final_result, label_data
# 创建Gradio界面
iface = gr.Interface(
fn=detect_ai_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.JSON(label="详细分析结果"),
gr.Label(label="主要分类", num_top_classes=1)
],
title="增强型AI图像检测API",
description="多模型集成检测图像是否由AI生成或真人照片(素人/修图)",
examples=None,
allow_flagging="never"
)
iface.launch()