Spaces:
Running
Running
File size: 54,178 Bytes
4b6a001 e8ef8e8 22d466a 6e3ea05 4b6a001 d2c6cf8 e8ef8e8 d2c6cf8 4b6a001 e8ef8e8 4b6a001 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 9521c70 d2c6cf8 4b6a001 d2c6cf8 e8ef8e8 4b6a001 e8ef8e8 4b6a001 e8ef8e8 4b6a001 d2c6cf8 6e2e8cb 6e3ea05 4b6a001 e8ef8e8 6e2e8cb 6e3ea05 6e2e8cb e8ef8e8 0d119a8 d2c6cf8 6e2e8cb 6e3ea05 e8ef8e8 d2c6cf8 6e2e8cb 6e3ea05 d2c6cf8 6e2e8cb 6e3ea05 6e2e8cb 6e3ea05 6e2e8cb e8ef8e8 6e3ea05 0cdea19 c200fda 4b6a001 6e2e8cb 6e3ea05 0cdea19 aab031c 0cdea19 6e3ea05 0a4fcc5 aab031c 6e3ea05 0cdea19 9521c70 0cdea19 6e3ea05 0cdea19 0aa2abb 9521c70 aab031c 9521c70 aab031c 0a4fcc5 aab031c 0a4fcc5 aab031c 0a4fcc5 aab031c 0a4fcc5 aab031c 9521c70 aab031c 9521c70 6e2e8cb 9521c70 6e2e8cb 6e3ea05 6e2e8cb 9521c70 6e3ea05 9521c70 6e3ea05 9521c70 6e3ea05 9521c70 6e2e8cb 6e3ea05 9521c70 6e3ea05 9521c70 6e2e8cb 6e3ea05 6e2e8cb 6e3ea05 6e2e8cb 6e3ea05 6e2e8cb 6e3ea05 6e2e8cb 6e3ea05 0cdea19 6e3ea05 0cdea19 6e3ea05 0cdea19 6e3ea05 0cdea19 6e3ea05 0cdea19 6e3ea05 0cdea19 6e3ea05 aab031c 6e3ea05 9521c70 6e2e8cb 6e3ea05 6e2e8cb 0aa2abb d2c6cf8 6e3ea05 d2c6cf8 6e3ea05 d2c6cf8 c2bd534 0a4fcc5 d2c6cf8 0a4fcc5 c2bd534 0a4fcc5 aab031c 9521c70 aab031c d2c6cf8 aab031c d2c6cf8 9521c70 6e2e8cb aab031c 9521c70 e8ef8e8 d2c6cf8 e8ef8e8 0a4fcc5 e8ef8e8 d2c6cf8 c200fda d2c6cf8 e8ef8e8 d2c6cf8 e8ef8e8 071497b 0a4fcc5 e8ef8e8 9521c70 6e2e8cb 2daec1f aab031c 9521c70 aab031c 6e2e8cb aab031c 2daec1f 0cdea19 2daec1f d2c6cf8 aab031c 0a4fcc5 9521c70 e8ef8e8 2daec1f 9521c70 d2c6cf8 6e2e8cb 9521c70 d2c6cf8 5195376 d2c6cf8 9521c70 6e2e8cb e8ef8e8 5195376 0a4fcc5 5195376 e8ef8e8 4b6a001 aab031c e8ef8e8 aab031c f16fd05 e8ef8e8 4b6a001 c303ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import cv2
from transformers import AutoImageProcessor, AutoModelForImageClassification
from skimage.feature import graycomatrix, graycoprops, local_binary_pattern
from scipy import ndimage, stats
# 加载多个检测模型
models = {
"model1": {
"name": "umm-maybe/AI-image-detector",
"processor": None,
"model": None,
"weight": 0.5
},
"model2": {
"name": "microsoft/resnet-50", # 通用图像分类模型
"processor": None,
"model": None,
"weight": 0.25
},
"model3": {
"name": "google/vit-base-patch16-224", # Vision Transformer模型
"processor": None,
"model": None,
"weight": 0.25
}
}
# 初始化模型
for key in models:
try:
models[key]["processor"] = AutoImageProcessor.from_pretrained(models[key]["name"])
models[key]["model"] = AutoModelForImageClassification.from_pretrained(models[key]["name"])
print(f"成功加载模型: {models[key]['name']}")
except Exception as e:
print(f"加载模型 {models[key]['name']} 失败: {str(e)}")
models[key]["processor"] = None
models[key]["model"] = None
def process_model_output(model_info, outputs, probabilities):
"""处理不同模型的输出,统一返回AI生成概率"""
model_name = model_info["name"].lower()
# 针对不同模型的特殊处理
if "ai-image-detector" in model_name:
# umm-maybe/AI-image-detector模型特殊处理
# 检查标签
ai_label_idx = None
human_label_idx = None
for idx, label in model_info["model"].config.id2label.items():
label_lower = label.lower()
if "ai" in label_lower or "generated" in label_lower or "fake" in label_lower:
ai_label_idx = idx
if "human" in label_lower or "real" in label_lower:
human_label_idx = idx
# 修正后的标签解释逻辑
if human_label_idx is not None:
# 如果预测为human,则AI概率应该低
ai_probability = 1 - float(probabilities[0][human_label_idx].item())
elif ai_label_idx is not None:
# 如果预测为AI,则AI概率应该高
ai_probability = float(probabilities[0][ai_label_idx].item())
else:
# 默认情况
ai_probability = 0.5
elif "resnet" in model_name:
# 通用图像分类模型,使用简单启发式方法
predicted_class_idx = outputs.logits.argmax(-1).item()
# 检查是否有与AI相关的类别
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
# 简单启发式:检查类别名称是否包含与AI生成相关的关键词
ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
for keyword in ai_keywords:
if keyword in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
# 如果没有明确的AI类别,返回中等概率
return 0.5
elif "vit" in model_name:
# Vision Transformer模型
predicted_class_idx = outputs.logits.argmax(-1).item()
# 同样检查类别名称
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
# 简单启发式:检查类别名称是否包含与AI生成相关的关键词
ai_keywords = ["artificial", "generated", "synthetic", "fake", "computer"]
for keyword in ai_keywords:
if keyword in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
# 如果没有明确的AI类别,返回中等概率
return 0.5
# 默认处理
predicted_class_idx = outputs.logits.argmax(-1).item()
predicted_class = model_info["model"].config.id2label[predicted_class_idx].lower()
if "ai" in predicted_class or "generated" in predicted_class or "fake" in predicted_class:
return float(probabilities[0][predicted_class_idx].item())
else:
return 1 - float(probabilities[0][predicted_class_idx].item())
return ai_probability
def analyze_image_features(image):
"""分析图像特征"""
# 转换为OpenCV格式
img_array = np.array(image)
if len(img_array.shape) == 3 and img_array.shape[2] == 3:
img_cv = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
else:
img_cv = img_array
features = {}
# 基本特征
features["width"] = image.width
features["height"] = image.height
features["aspect_ratio"] = image.width / max(1, image.height)
# 颜色分析
if len(img_array.shape) == 3:
features["avg_red"] = float(np.mean(img_array[:,:,0]))
features["avg_green"] = float(np.mean(img_array[:,:,1]))
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
# 颜色标准差 - 用于检测颜色分布是否自然
features["color_std"] = float(np.std([
features["avg_red"],
features["avg_green"],
features["avg_blue"]
]))
# 颜色局部变化 - 真实照片通常有更多局部颜色变化
local_color_variations = []
for i in range(0, img_array.shape[0]-10, 10):
for j in range(0, img_array.shape[1]-10, 10):
patch = img_array[i:i+10, j:j+10]
local_color_variations.append(np.std(patch))
features["local_color_variation"] = float(np.mean(local_color_variations))
# 颜色分布的自然度 - 真实照片的颜色分布更自然
r_hist, _ = np.histogram(img_array[:,:,0], bins=256, range=(0, 256))
g_hist, _ = np.histogram(img_array[:,:,1], bins=256, range=(0, 256))
b_hist, _ = np.histogram(img_array[:,:,2], bins=256, range=(0, 256))
# 计算颜色直方图的熵 - 真实照片通常熵值更高
r_entropy = stats.entropy(r_hist + 1e-10) # 添加小值避免log(0)
g_entropy = stats.entropy(g_hist + 1e-10)
b_entropy = stats.entropy(b_hist + 1e-10)
features["color_entropy"] = float((r_entropy + g_entropy + b_entropy) / 3)
# 边缘一致性分析
edges = cv2.Canny(img_cv, 100, 200)
features["edge_density"] = float(np.sum(edges > 0) / (image.width * image.height))
# 边缘自然度分析 - 真实照片的边缘通常更自然
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
edge_magnitude = np.sqrt(sobelx**2 + sobely**2)
features["edge_variance"] = float(np.var(edge_magnitude))
# 边缘方向分布 - 真实照片的边缘方向分布更自然
edge_direction = np.arctan2(sobely, sobelx) * 180 / np.pi
edge_dir_hist, _ = np.histogram(edge_direction[edge_magnitude > 30], bins=36, range=(-180, 180))
features["edge_direction_entropy"] = float(stats.entropy(edge_dir_hist + 1e-10))
# 纹理分析 - 使用灰度共生矩阵
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
# 计算GLCM
distances = [5]
angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
glcm = graycomatrix(gray, distances=distances, angles=angles, symmetric=True, normed=True)
# 计算GLCM属性
features["texture_contrast"] = float(np.mean(graycoprops(glcm, 'contrast')[0]))
features["texture_homogeneity"] = float(np.mean(graycoprops(glcm, 'homogeneity')[0]))
features["texture_correlation"] = float(np.mean(graycoprops(glcm, 'correlation')[0]))
features["texture_energy"] = float(np.mean(graycoprops(glcm, 'energy')[0]))
features["texture_dissimilarity"] = float(np.mean(graycoprops(glcm, 'dissimilarity')[0]))
features["texture_ASM"] = float(np.mean(graycoprops(glcm, 'ASM')[0]))
# 局部二值模式 (LBP) - 分析微观纹理
try:
radius = 3
n_points = 8 * radius
lbp = local_binary_pattern(gray, n_points, radius, method='uniform')
lbp_hist, _ = np.histogram(lbp, bins=n_points + 2, range=(0, n_points + 2))
lbp_hist = lbp_hist.astype(float) / sum(lbp_hist)
features["lbp_entropy"] = float(stats.entropy(lbp_hist + 1e-10))
except:
# 如果LBP分析失败,不添加这个特征
pass
# 噪声分析
if len(img_array.shape) == 3:
blurred = cv2.GaussianBlur(img_cv, (5, 5), 0)
noise = cv2.absdiff(img_cv, blurred)
features["noise_level"] = float(np.mean(noise))
# 噪声分布 - 用于检测噪声是否自然
features["noise_std"] = float(np.std(noise))
# 噪声频谱分析 - 真实照片的噪声频谱更自然
noise_fft = np.fft.fft2(noise[:,:,0])
noise_fft_shift = np.fft.fftshift(noise_fft)
noise_magnitude = np.abs(noise_fft_shift)
features["noise_spectrum_std"] = float(np.std(noise_magnitude))
# 噪声的空间一致性 - AI生成图像的噪声空间分布通常不够自然
noise_blocks = []
block_size = 32
for i in range(0, noise.shape[0]-block_size, block_size):
for j in range(0, noise.shape[1]-block_size, block_size):
block = noise[i:i+block_size, j:j+block_size]
noise_blocks.append(np.mean(block))
features["noise_spatial_std"] = float(np.std(noise_blocks))
# 对称性分析 - AI生成图像通常有更高的对称性
if img_cv.shape[1] % 2 == 0: # 确保宽度是偶数
left_half = img_cv[:, :img_cv.shape[1]//2]
right_half = cv2.flip(img_cv[:, img_cv.shape[1]//2:], 1)
if left_half.shape == right_half.shape:
h_symmetry = 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255)
features["horizontal_symmetry"] = h_symmetry
if img_cv.shape[0] % 2 == 0: # 确保高度是偶数
top_half = img_cv[:img_cv.shape[0]//2, :]
bottom_half = cv2.flip(img_cv[img_cv.shape[0]//2:, :], 0)
if top_half.shape == bottom_half.shape:
v_symmetry = 1 - float(np.mean(cv2.absdiff(top_half, bottom_half)) / 255)
features["vertical_symmetry"] = v_symmetry
# 频率域分析 - 检测不自然的频率分布
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
f_transform = np.fft.fft2(gray)
f_shift = np.fft.fftshift(f_transform)
magnitude = np.log(np.abs(f_shift) + 1)
# 计算高频和低频成分的比例
h, w = magnitude.shape
center_h, center_w = h // 2, w // 2
# 低频区域 (中心区域)
low_freq_region = magnitude[center_h-h//8:center_h+h//8, center_w-w//8:center_w+w//8]
low_freq_mean = np.mean(low_freq_region)
# 高频区域 (边缘区域)
high_freq_mean = np.mean(magnitude) - low_freq_mean
features["freq_ratio"] = float(high_freq_mean / max(low_freq_mean, 0.001))
# 频率分布的自然度 - 真实照片通常有更自然的频率分布
freq_std = np.std(magnitude)
features["freq_std"] = float(freq_std)
# 频率分布的各向异性 - 真实照片的频率分布通常更各向异性
freq_blocks = []
for angle in range(0, 180, 20):
mask = np.zeros_like(magnitude)
cv2.ellipse(mask, (center_w, center_h), (w//2, h//2), angle, -10, 10, 1, -1)
freq_blocks.append(np.mean(magnitude * mask))
features["freq_anisotropy"] = float(np.std(freq_blocks))
# 尝试检测人脸
try:
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
features["face_count"] = len(faces)
if len(faces) > 0:
# 分析人脸特征
face_features = []
for (x, y, w, h) in faces:
face = img_cv[y:y+h, x:x+w]
# 皮肤质感分析
face_hsv = cv2.cvtColor(face, cv2.COLOR_BGR2HSV)
skin_mask = cv2.inRange(face_hsv, (0, 20, 70), (20, 150, 255))
skin_pixels = face[skin_mask > 0]
if len(skin_pixels) > 0:
face_features.append({
"skin_std": float(np.std(skin_pixels)),
"skin_local_contrast": float(np.mean(cv2.Laplacian(face, cv2.CV_64F))),
"face_symmetry": analyze_face_symmetry(face)
})
if face_features:
features["face_skin_std"] = np.mean([f["skin_std"] for f in face_features])
features["face_local_contrast"] = np.mean([f["skin_local_contrast"] for f in face_features])
features["face_symmetry"] = np.mean([f["face_symmetry"] for f in face_features])
# 面部微表情分析
for i, (x, y, w, h) in enumerate(faces):
face = gray[y:y+h, x:x+w]
# 分析面部纹理的局部变化
face_blocks = []
block_size = 8
for bi in range(0, face.shape[0]-block_size, block_size):
for bj in range(0, face.shape[1]-block_size, block_size):
block = face[bi:bi+block_size, bj:bj+block_size]
face_blocks.append(np.std(block))
if face_blocks:
features[f"face_{i}_texture_variation"] = float(np.std(face_blocks))
except:
# 如果人脸检测失败,不添加人脸特征
pass
# 分析物理一致性
physical_features = analyze_physical_consistency(img_cv)
features.update(physical_features)
# 分析细节连贯性
detail_features = analyze_detail_coherence(img_cv)
features.update(detail_features)
# 分析衣物细节
clothing_features = analyze_clothing_details(img_cv)
features.update(clothing_features)
# 分析手部和关节
extremity_features = analyze_extremities(img_cv)
features.update(extremity_features)
return features
def analyze_face_symmetry(face):
"""分析人脸对称性"""
if face.shape[1] % 2 == 0: # 确保宽度是偶数
left_half = face[:, :face.shape[1]//2]
right_half = cv2.flip(face[:, face.shape[1]//2:], 1)
if left_half.shape == right_half.shape:
return 1 - float(np.mean(cv2.absdiff(left_half, right_half)) / 255)
return 0.5 # 默认值
def analyze_physical_consistency(image):
"""分析图像中的物理一致性"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 光影一致性分析
# 检测亮度梯度
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)
gradient_direction = np.arctan2(sobely, sobelx)
# 分析梯度方向的一致性 - 真实照片的光影梯度方向更一致
# 将图像分成块,分析每个块的主要梯度方向
block_size = 32
gradient_dirs = []
for i in range(0, gray.shape[0]-block_size, block_size):
for j in range(0, gray.shape[1]-block_size, block_size):
block_gradient = gradient_direction[i:i+block_size, j:j+block_size]
block_magnitude = gradient_magnitude[i:i+block_size, j:j+block_size]
# 只考虑梯度幅值较大的像素
significant_gradients = block_gradient[block_magnitude > np.mean(block_magnitude)]
if len(significant_gradients) > 0:
# 计算主要方向
hist, _ = np.histogram(significant_gradients, bins=8, range=(-np.pi, np.pi))
main_dir = np.argmax(hist)
gradient_dirs.append(main_dir)
if gradient_dirs:
# 计算主要方向的一致性
hist, _ = np.histogram(gradient_dirs, bins=8, range=(0, 8))
features["light_direction_consistency"] = float(np.max(hist) / max(sum(hist), 1))
# 透视一致性分析
# 使用霍夫变换检测直线
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=50, minLineLength=50, maxLineGap=10)
if lines is not None and len(lines) > 1:
# 分析消失点
vanishing_points = []
for i in range(len(lines)):
for j in range(i+1, len(lines)):
x1, y1, x2, y2 = lines[i][0]
x3, y3, x4, y4 = lines[j][0]
# 计算两条线的交点(可能的消失点)
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
if abs(d) > 0.001: # 避免平行线
px = ((x1*y2 - y1*x2)*(x3-x4) - (x1-x2)*(x3*y4 - y3*x4)) / d
py = ((x1*y2 - y1*x2)*(y3-y4) - (y1-y2)*(x3*y4 - y3*x4)) / d
# 只考虑图像范围内或附近的交点
img_diag = np.sqrt(gray.shape[0]**2 + gray.shape[1]**2)
if -img_diag < px < 2*gray.shape[1] and -img_diag < py < 2*gray.shape[0]:
vanishing_points.append((px, py))
if vanishing_points:
# 分析消失点的聚集程度 - 真实照片的消失点通常更聚集
vp_x = [p[0] for p in vanishing_points]
vp_y = [p[1] for p in vanishing_points]
features["perspective_consistency"] = float(1 / (1 + np.std(vp_x) + np.std(vp_y)))
except:
# 如果分析失败,不添加物理一致性特征
pass
return features
def analyze_detail_coherence(image):
"""分析图像细节的连贯性"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 多尺度细节分析
scales = [3, 5, 9]
detail_levels = []
for scale in scales:
# 使用不同尺度的拉普拉斯算子提取细节
laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=scale)
abs_laplacian = np.abs(laplacian)
detail_levels.append(np.mean(abs_laplacian))
# 计算细节随尺度变化的一致性 - 真实照片的细节随尺度变化更自然
if len(detail_levels) > 1:
features["detail_scale_consistency"] = float(np.std(detail_levels) / max(np.mean(detail_levels), 0.001))
# 分析图像不同区域的细节一致性
block_size = 64
detail_blocks = []
for i in range(0, gray.shape[0]-block_size, block_size):
for j in range(0, gray.shape[1]-block_size, block_size):
block = gray[i:i+block_size, j:j+block_size]
# 计算块的细节水平
block_laplacian = cv2.Laplacian(block, cv2.CV_64F)
detail_blocks.append(np.mean(np.abs(block_laplacian)))
if detail_blocks:
# 计算细节分布的均匀性 - AI生成图像的细节分布通常不够均匀
features["detail_spatial_std"] = float(np.std(detail_blocks))
features["detail_spatial_entropy"] = float(stats.entropy(detail_blocks + 1e-10))
# 边缘过渡分析
edges = cv2.Canny(gray, 50, 150)
dilated = cv2.dilate(edges, np.ones((3,3), np.uint8))
edge_transition = cv2.absdiff(dilated, edges)
# 计算边缘过渡区域的特性 - 真实照片的边缘过渡更自然
if np.sum(edge_transition) > 0:
transition_values = gray[edge_transition > 0]
if len(transition_values) > 0:
features["edge_transition_std"] = float(np.std(transition_values))
except:
# 如果分析失败,不添加细节连贯性特征
pass
return features
def analyze_clothing_details(image):
"""分析衣物细节的自然度"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 使用Canny边缘检测
edges = cv2.Canny(gray, 50, 150)
# 使用霍夫变换检测直线
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=50, minLineLength=50, maxLineGap=10)
if lines is not None:
# 计算直线的角度分布
angles = []
for line in lines:
x1, y1, x2, y2 = line[0]
if x2 - x1 != 0: # 避免除以零
angle = np.arctan((y2 - y1) / (x2 - x1)) * 180 / np.pi
angles.append(angle)
if angles:
# 计算角度的标准差 - AI生成的衣物褶皱通常角度分布不自然
features["clothing_angle_std"] = float(np.std(angles))
# 计算角度的直方图 - 检查是否有过多相似角度(AI生成特征)
hist, _ = np.histogram(angles, bins=18, range=(-90, 90))
max_count = np.max(hist)
total_count = np.sum(hist)
features["clothing_angle_uniformity"] = float(max_count / max(total_count, 1))
# 分析纹理的一致性
# 将图像分成小块,计算每个块的纹理特征
block_size = 32
h, w = gray.shape
texture_variations = []
for i in range(0, h-block_size, block_size):
for j in range(0, w-block_size, block_size):
block = gray[i:i+block_size, j:j+block_size]
# 计算局部LBP特征或简单的方差
texture_variations.append(np.var(block))
if texture_variations:
# 计算纹理变化的标准差 - 真实衣物纹理变化更自然
features["clothing_texture_std"] = float(np.std(texture_variations))
# 计算纹理变化的均值 - AI生成的衣物纹理通常变化较小
features["clothing_texture_mean"] = float(np.mean(texture_variations))
# 计算纹理变化的熵 - 真实衣物纹理变化的熵更高
features["clothing_texture_entropy"] = float(stats.entropy(texture_variations + 1e-10))
# 褶皱分析 - 使用形态学操作提取可能的褶皱
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# 寻找轮廓
contours, _ = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 分析轮廓的复杂度
if contours:
contour_complexities = []
for contour in contours:
area = cv2.contourArea(contour)
if area > 100: # 忽略太小的轮廓
perimeter = cv2.arcLength(contour, True)
complexity = perimeter / max(np.sqrt(area), 1)
contour_complexities.append(complexity)
if contour_complexities:
features["clothing_contour_complexity"] = float(np.mean(contour_complexities))
features["clothing_contour_std"] = float(np.std(contour_complexities))
except:
# 如果分析失败,不添加衣物特征
pass
return features
def analyze_extremities(image):
"""分析手指、脚趾等末端细节"""
features = {}
try:
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 使用形态学操作提取可能的手部区域
_, thresh = cv2.threshold(gray, 120, 255, cv2.THRESH_BINARY)
kernel = np.ones((5,5), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# 寻找轮廓
contours, _ = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 分析轮廓的复杂度
if contours:
# 计算轮廓的周长与面积比 - 手指等细节会增加这个比值
perimeter_area_ratios = []
for contour in contours:
area = cv2.contourArea(contour)
if area > 100: # 忽略太小的轮廓
perimeter = cv2.arcLength(contour, True)
ratio = perimeter / max(area, 1)
perimeter_area_ratios.append(ratio)
if perimeter_area_ratios:
features["extremity_perimeter_area_ratio"] = float(np.mean(perimeter_area_ratios))
# 计算凸包缺陷 - 手指之间的间隙会产生凸包缺陷
defect_depths = []
for contour in contours:
if len(contour) > 5: # 需要足够多的点来计算凸包
hull = cv2.convexHull(contour, returnPoints=False)
if len(hull) > 3: # 需要至少4个点来计算凸包缺陷
try:
defects = cv2.convexityDefects(contour, hull)
if defects is not None:
for i in range(defects.shape[0]):
_, _, _, depth = defects[i, 0]
defect_depths.append(depth)
except:
pass
if defect_depths:
features["extremity_defect_depth_mean"] = float(np.mean(defect_depths))
features["extremity_defect_depth_std"] = float(np.std(defect_depths))
# 分析缺陷的分布 - 真实手指的缺陷分布更自然
defect_hist, _ = np.histogram(defect_depths, bins=10)
features["extremity_defect_entropy"] = float(stats.entropy(defect_hist + 1e-10))
# 分析轮廓的曲率变化 - 真实手指的曲率变化更自然
curvature_variations = []
for contour in contours:
if len(contour) > 20: # 需要足够多的点来计算曲率
# 简化轮廓以减少噪声
epsilon = 0.01 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
# 计算相邻点之间的角度变化
angles = []
for i in range(len(approx)):
p1 = approx[i][0]
p2 = approx[(i+1) % len(approx)][0]
p3 = approx[(i+2) % len(approx)][0]
# 计算两个向量之间的角度
v1 = p2 - p1
v2 = p3 - p2
if np.linalg.norm(v1) > 0 and np.linalg.norm(v2) > 0:
cos_angle = np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
cos_angle = np.clip(cos_angle, -1.0, 1.0) # 确保在有效范围内
angle = np.arccos(cos_angle)
angles.append(angle)
if angles:
curvature_variations.append(np.std(angles))
if curvature_variations:
features["extremity_curvature_std"] = float(np.mean(curvature_variations))
except:
# 如果分析失败,不添加末端特征
pass
return features
def check_ai_specific_features(image_features):
"""检查AI生成图像的典型特征,增强对最新AI模型的检测能力"""
ai_score = 0
ai_signs = []
# 增加对微观纹理的分析权重
if "lbp_entropy" in image_features:
if image_features["lbp_entropy"] < 2.0:
ai_score += 0.4 # 提高权重
ai_signs.append("微观纹理熵极低,典型AI生成特征")
elif image_features["lbp_entropy"] < 3.0:
ai_score += 0.3
ai_signs.append("微观纹理熵异常低")
# 增加对频率分布各向异性的分析权重
if "freq_anisotropy" in image_features:
if image_features["freq_anisotropy"] < 0.05:
ai_score += 0.4 # 提高权重
ai_signs.append("频率分布各向异性极低,典型AI生成特征")
elif image_features["freq_anisotropy"] < 0.5:
ai_score += 0.3
ai_signs.append("频率分布各向异性异常低")
# 增加对细节一致性的分析
if "detail_scale_consistency" in image_features and "detail_spatial_std" in image_features:
if image_features["detail_scale_consistency"] < 0.2 and image_features["detail_spatial_std"] < 5:
ai_score += 0.3
ai_signs.append("细节一致性异常,典型AI生成特征")
# 检查对称性 - AI生成图像通常对称性高
if "horizontal_symmetry" in image_features and "vertical_symmetry" in image_features:
avg_symmetry = (image_features["horizontal_symmetry"] + image_features["vertical_symmetry"]) / 2
if avg_symmetry > 0.8:
ai_score += 0.15
ai_signs.append("图像对称性异常高")
elif avg_symmetry > 0.7:
ai_score += 0.1
ai_signs.append("图像对称性较高")
# 检查纹理相关性 - AI生成图像通常纹理相关性高
if "texture_correlation" in image_features:
if image_features["texture_correlation"] > 0.95: # 提高阈值
ai_score += 0.15
ai_signs.append("纹理相关性异常高")
elif image_features["texture_correlation"] > 0.9:
ai_score += 0.1
ai_signs.append("纹理相关性较高")
# 检查边缘与噪声的关系 - AI生成图像通常边缘清晰但噪声不自然
if "edge_density" in image_features and "noise_level" in image_features:
edge_noise_ratio = image_features["edge_density"] / max(image_features["noise_level"], 0.001)
if edge_noise_ratio < 0.01:
ai_score += 0.15
ai_signs.append("边缘与噪声分布不自然")
# 检查颜色平滑度 - AI生成图像通常颜色过渡更平滑
if "color_std" in image_features and image_features["color_std"] < 10:
ai_score += 0.1
ai_signs.append("颜色过渡异常平滑")
# 检查颜色熵 - AI生成图像通常颜色熵较低
if "color_entropy" in image_features and image_features["color_entropy"] < 5:
ai_score += 0.15
ai_signs.append("颜色分布熵值异常低")
# 检查纹理能量 - AI生成图像通常纹理能量分布不自然
if "texture_energy" in image_features and image_features["texture_energy"] < 0.01:
ai_score += 0.15
ai_signs.append("纹理能量分布不自然")
# 检查频率比例 - AI生成图像通常频率分布不自然
if "freq_ratio" in image_features:
if image_features["freq_ratio"] < 0.1 or image_features["freq_ratio"] > 2.0:
ai_score += 0.1
ai_signs.append("频率分布不自然")
# 检查噪声频谱 - 真实照片的噪声频谱更自然
if "noise_spectrum_std" in image_features and image_features["noise_spectrum_std"] < 1000:
ai_score += 0.15
ai_signs.append("噪声频谱异常规则")
# 检查噪声空间分布 - 真实照片的噪声空间分布更自然
if "noise_spatial_std" in image_features and image_features["noise_spatial_std"] < 0.5:
ai_score += 0.15
ai_signs.append("噪声空间分布异常均匀")
# 检查细节尺度一致性 - AI生成图像的细节尺度一致性通常不够自然
if "detail_scale_consistency" in image_features and image_features["detail_scale_consistency"] < 0.2:
ai_score += 0.15
ai_signs.append("细节尺度变化异常均匀")
# 检查细节空间分布 - AI生成图像的细节空间分布通常不够自然
if "detail_spatial_std" in image_features and image_features["detail_spatial_std"] < 5:
ai_score += 0.15
ai_signs.append("细节空间分布异常均匀")
# 检查细节空间熵 - AI生成图像的细节空间熵通常较低
if "detail_spatial_entropy" in image_features and image_features["detail_spatial_entropy"] < 1.5:
ai_score += 0.15
ai_signs.append("细节空间熵异常低")
# 检查边缘过渡 - AI生成图像的边缘过渡通常不够自然
if "edge_transition_std" in image_features and image_features["edge_transition_std"] < 10:
ai_score += 0.15
ai_signs.append("边缘过渡异常均匀")
# 检查光影一致性 - AI生成图像的光影一致性通常过高
if "light_direction_consistency" in image_features and image_features["light_direction_consistency"] > 0.7:
ai_score += 0.15
ai_signs.append("光影方向一致性异常高")
# 检查透视一致性 - AI生成图像的透视一致性通常过高
if "perspective_consistency" in image_features and image_features["perspective_consistency"] > 0.7:
ai_score += 0.15
ai_signs.append("透视一致性异常高")
# 检查人脸特征 - AI生成的人脸通常有特定特征
if "face_symmetry" in image_features and image_features["face_symmetry"] > 0.8:
ai_score += 0.15
ai_signs.append("人脸对称性异常高")
if "face_skin_std" in image_features and image_features["face_skin_std"] < 10:
ai_score += 0.2
ai_signs.append("皮肤质感异常均匀")
# 检查面部纹理变化 - AI生成的面部纹理变化通常不够自然
face_texture_keys = [k for k in image_features.keys() if k.startswith("face_") and k.endswith("_texture_variation")]
if face_texture_keys:
face_texture_variations = [image_features[k] for k in face_texture_keys]
if np.mean(face_texture_variations) < 5:
ai_score += 0.2
ai_signs.append("面部纹理变化异常均匀")
# 检查衣物特征 - AI生成的衣物通常有特定问题
if "clothing_angle_uniformity" in image_features and image_features["clothing_angle_uniformity"] > 0.3:
ai_score += 0.2
ai_signs.append("衣物褶皱角度分布不自然")
if "clothing_texture_std" in image_features and image_features["clothing_texture_std"] < 100:
ai_score += 0.15
ai_signs.append("衣物纹理变化异常均匀")
if "clothing_texture_entropy" in image_features and image_features["clothing_texture_entropy"] < 1.5:
ai_score += 0.15
ai_signs.append("衣物纹理熵异常低")
if "clothing_contour_complexity" in image_features and image_features["clothing_contour_complexity"] < 5:
ai_score += 0.15
ai_signs.append("衣物轮廓复杂度异常低")
# 检查手部特征 - AI生成的手部通常有特定问题
if "extremity_perimeter_area_ratio" in image_features:
if image_features["extremity_perimeter_area_ratio"] < 0.05:
ai_score += 0.2
ai_signs.append("手部/末端轮廓异常平滑")
if "extremity_defect_depth_std" in image_features and image_features["extremity_defect_depth_std"] < 10:
ai_score += 0.15
ai_signs.append("手指间隙异常均匀")
if "extremity_defect_entropy" in image_features and image_features["extremity_defect_entropy"] < 1.0:
ai_score += 0.15
ai_signs.append("手指间隙分布熵异常低")
if "extremity_curvature_std" in image_features and image_features["extremity_curvature_std"] < 0.2:
ai_score += 0.15
ai_signs.append("手部曲率变化异常均匀")
# 特别关注最新AI模型的特征组合
# 当多个特征同时出现时,这是强有力的AI生成证据
ai_feature_count = len(ai_signs)
if ai_feature_count >= 5: # 如果检测到多个AI特征
ai_score = max(ai_score, 0.9) # 确保AI分数很高
elif ai_feature_count >= 3:
ai_score = max(ai_score, 0.7)
return min(ai_score, 1.0), ai_signs
def detect_beauty_filter_signs(image_features):
"""检测美颜滤镜痕迹"""
beauty_score = 0
beauty_signs = []
# 检查皮肤质感
if "face_skin_std" in image_features:
if image_features["face_skin_std"] < 15:
beauty_score += 0.3
beauty_signs.append("皮肤质感过于均匀,典型美颜特征")
elif image_features["face_skin_std"] < 25:
beauty_score += 0.2
beauty_signs.append("皮肤质感较为均匀,可能使用了美颜")
# 检查局部对比度 - 美颜通常会降低局部对比度
if "face_local_contrast" in image_features:
if image_features["face_local_contrast"] < 5:
beauty_score += 0.2
beauty_signs.append("面部局部对比度低,典型美颜特征")
# 检查边缘平滑度 - 美颜通常会平滑边缘
if "edge_density" in image_features:
if image_features["edge_density"] < 0.03:
beauty_score += 0.2
beauty_signs.append("边缘过于平滑,典型美颜特征")
elif image_features["edge_density"] < 0.05:
beauty_score += 0.1
beauty_signs.append("边缘较为平滑,可能使用了美颜")
# 检查噪点 - 美颜通常会减少噪点
if "noise_level" in image_features:
if image_features["noise_level"] < 1.0:
beauty_score += 0.2
beauty_signs.append("噪点异常少,典型美颜特征")
elif image_features["noise_level"] < 2.0:
beauty_score += 0.1
beauty_signs.append("噪点较少,可能使用了美颜")
# 检查人脸对称性 - 美颜通常会增加对称性
if "face_symmetry" in image_features:
if image_features["face_symmetry"] > 0.8:
beauty_score += 0.2
beauty_signs.append("面部对称性异常高,典型美颜特征")
elif image_features["face_symmetry"] > 0.7:
beauty_score += 0.1
beauty_signs.append("面部对称性较高,可能使用了美颜")
# 检查面部纹理变化 - 美颜通常会使面部纹理更均匀
face_texture_keys = [k for k in image_features.keys() if k.startswith("face_") and k.endswith("_texture_variation")]
if face_texture_keys:
face_texture_variations = [image_features[k] for k in face_texture_keys]
if np.mean(face_texture_variations) < 10:
beauty_score += 0.2
beauty_signs.append("面部纹理变化异常均匀,典型美颜特征")
# 检查边缘过渡 - 美颜通常会使边缘过渡更平滑
if "edge_transition_std" in image_features and image_features["edge_transition_std"] < 15:
beauty_score += 0.2
beauty_signs.append("边缘过渡异常平滑,典型美颜特征")
return min(beauty_score, 1.0), beauty_signs
def detect_photoshop_signs(image_features):
"""检测图像中的PS痕迹"""
ps_score = 0
ps_signs = []
# 检查皮肤质感
if "texture_homogeneity" in image_features:
if image_features["texture_homogeneity"] > 0.4:
ps_score += 0.2
ps_signs.append("皮肤质感过于均匀")
elif image_features["texture_homogeneity"] > 0.3:
ps_score += 0.1
ps_signs.append("皮肤质感较为均匀")
# 检查边缘不自然
if "edge_density" in image_features:
if image_features["edge_density"] < 0.01:
ps_score += 0.2
ps_signs.append("边缘过于平滑")
elif image_features["edge_density"] < 0.03:
ps_score += 0.1
ps_signs.append("边缘较为平滑")
# 检查颜色不自然
if "color_std" in image_features:
if image_features["color_std"] > 50:
ps_score += 0.2
ps_signs.append("颜色分布极不自然")
elif image_features["color_std"] > 30:
ps_score += 0.1
ps_signs.append("颜色分布略不自然")
# 检查噪点不一致
if "noise_level" in image_features and "noise_std" in image_features:
noise_ratio = image_features["noise_std"] / max(image_features["noise_level"], 0.001)
if noise_ratio < 0.5:
ps_score += 0.2
ps_signs.append("噪点分布不自然")
elif noise_ratio < 0.7:
ps_score += 0.1
ps_signs.append("噪点分布略不自然")
# 检查频率分布不自然
if "freq_ratio" in image_features:
if image_features["freq_ratio"] < 0.2:
ps_score += 0.2
ps_signs.append("频率分布不自然,可能有过度模糊处理")
elif image_features["freq_ratio"] > 2.0:
ps_score += 0.2
ps_signs.append("频率分布不自然,可能有过度锐化处理")
# 检查细节不一致
if "detail_spatial_std" in image_features and image_features["detail_spatial_std"] > 50:
ps_score += 0.2
ps_signs.append("图像细节分布不一致,可能有局部修饰")
# 检查边缘过渡不自然
if "edge_transition_std" in image_features:
if image_features["edge_transition_std"] > 50:
ps_score += 0.2
ps_signs.append("边缘过渡不自然,可能有选区修饰")
elif image_features["edge_transition_std"] < 5:
ps_score += 0.2
ps_signs.append("边缘过渡过于平滑,可能有过度修饰")
return min(ps_score, 1.0), ps_signs
# 在这里添加get_detailed_analysis函数
def get_detailed_analysis(ai_probability, ps_score, beauty_score, ps_signs, ai_signs, beauty_signs, valid_models_count, ai_feature_score, image_features=None):
"""提供更详细的分析结果,使用二级分类框架,优先考虑AI特征分析"""
# 根据有效模型数量调整置信度描述
confidence_prefix = ""
if valid_models_count >= 3:
confidence_prefix = "极高置信度:"
elif valid_models_count == 2:
confidence_prefix = "高置信度:"
elif valid_models_count == 1:
confidence_prefix = "中等置信度:"
# 特征与模型判断严重不一致时的处理
if ai_feature_score > 0.8 and ai_probability < 0.6:
ai_probability = max(0.8, ai_probability) # 当AI特征分数非常高时,覆盖模型判断
category = confidence_prefix + "AI生成图像(基于特征分析)"
description = "基于多种典型AI特征分析,该图像很可能是AI生成的,尽管模型判断结果不确定。"
main_category = "AI生成"
elif ai_feature_score > 0.6 and ai_probability < 0.5:
ai_probability = max(0.7, ai_probability) # 当AI特征分数高时,提高AI概率
# 特定关键特征的硬性覆盖
if image_features is not None:
if "lbp_entropy" in image_features and image_features["lbp_entropy"] < 2.0:
if "freq_anisotropy" in image_features and image_features["freq_anisotropy"] < 0.05:
# 当微观纹理熵极低且频率分布各向异性极低时,几乎可以确定是AI生成
ai_probability = 0.95
category = confidence_prefix + "AI生成图像(确定)"
description = "检测到多个决定性AI生成特征,该图像几乎可以确定是AI生成的。"
main_category = "AI生成"
# 添加具体的PS痕迹描述
if ps_signs:
ps_details = "检测到的修图痕迹:" + "、".join(ps_signs)
else:
ps_details = "未检测到明显的修图痕迹。"
# 添加AI特征描述
if ai_signs:
ai_details = "检测到的AI特征:" + "、".join(ai_signs)
else:
ai_details = "未检测到明显的AI生成特征。"
# 添加美颜特征描述
if beauty_signs:
beauty_details = "检测到的美颜特征:" + "、".join(beauty_signs)
else:
beauty_details = "未检测到明显的美颜特征。"
return category, description, ps_details, ai_details, beauty_details, main_category
# 第一级分类:AI生成 vs 真人照片
if ai_probability > 0.6: # 降低AI判定阈值,提高AI检出率
category = confidence_prefix + "AI生成图像"
description = "图像很可能是由AI完全生成,几乎没有真人照片的特征。"
main_category = "AI生成"
else:
# 第二级分类:真实素人 vs 修图痕迹明显
combined_edit_score = max(ps_score, beauty_score) # 取PS和美颜中的较高分
if combined_edit_score > 0.5:
category = confidence_prefix + "真人照片,修图痕迹明显"
description = "图像基本是真人照片,但经过了明显的后期处理或美颜,修饰痕迹明显。"
main_category = "真人照片-修图明显"
else:
category = confidence_prefix + "真实素人照片"
description = "图像很可能是未经大量处理的真人照片,保留了自然的细节和特征。"
main_category = "真人照片-素人"
# 处理边界情况 - 当AI概率和修图分数都很高时
if ai_probability > 0.45 and combined_edit_score > 0.7:
# 这是一个边界情况,可能是高度修图的真人照片,也可能是AI生成的
category = confidence_prefix + "真人照片,修图痕迹明显(也可能是AI生成)"
description = "图像可能是真人照片经过大量后期处理,也可能是AI生成图像。由于现代AI技术与高度修图效果相似,难以完全区分。"
main_category = "真人照片-修图明显"
# 添加具体的PS痕迹描述
if ps_signs:
ps_details = "检测到的修图痕迹:" + "、".join(ps_signs)
else:
ps_details = "未检测到明显的修图痕迹。"
# 添加AI特征描述
if ai_signs:
ai_details = "检测到的AI特征:" + "、".join(ai_signs)
else:
ai_details = "未检测到明显的AI生成特征。"
# 添加美颜特征描述
if beauty_signs:
beauty_details = "检测到的美颜特征:" + "、".join(beauty_signs)
else:
beauty_details = "未检测到明显的美颜特征。"
return category, description, ps_details, ai_details, beauty_details, main_category
def detect_ai_image(image):
"""主检测函数"""
if image is None:
return {"error": "未提供图像"}
results = {}
valid_models = 0
weighted_ai_probability = 0
# 使用每个模型进行预测
for key, model_info in models.items():
if model_info["processor"] is not None and model_info["model"] is not None:
try:
# 处理图像
inputs = model_info["processor"](images=image, return_tensors="pt")
with torch.no_grad():
outputs = model_info["model"](**inputs)
# 获取概率
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# 使用适配器处理不同模型的输出
ai_probability = process_model_output(model_info, outputs, probabilities)
# 添加到结果
predicted_class_idx = outputs.logits.argmax(-1).item()
results[key] = {
"model_name": model_info["name"],
"ai_probability": ai_probability,
"predicted_class": model_info["model"].config.id2label[predicted_class_idx]
}
# 累加加权概率
weighted_ai_probability += ai_probability * model_info["weight"]
valid_models += 1
except Exception as e:
results[key] = {
"model_name": model_info["name"],
"error": str(e)
}
# 计算最终加权概率
if valid_models > 0:
final_ai_probability = weighted_ai_probability / sum(m["weight"] for k, m in models.items() if m["processor"] is not None and m["model"] is not None)
else:
return {"error": "所有模型加载失败"}
# 分析图像特征
image_features = analyze_image_features(image)
# 检查AI特定特征
ai_feature_score, ai_signs = check_ai_specific_features(image_features)
# 分析PS痕迹
ps_score, ps_signs = detect_photoshop_signs(image_features)
# 分析美颜痕迹
beauty_score, beauty_signs = detect_beauty_filter_signs(image_features)
# 应用特征权重调整AI概率
adjusted_probability = final_ai_probability
# 提高AI特征分数的权重
if ai_feature_score > 0.8: # 当AI特征非常明显时
adjusted_probability = max(adjusted_probability, 0.8) # 大幅提高AI概率
elif ai_feature_score > 0.6:
adjusted_probability = max(adjusted_probability, 0.7)
elif ai_feature_score > 0.4:
adjusted_probability = max(adjusted_probability, 0.6)
# 特别关注关键AI特征
key_ai_features_count = 0
# 检查微观纹理熵 - 这是AI生成的强力指标
if "lbp_entropy" in image_features and image_features["lbp_entropy"] < 2.5:
key_ai_features_count += 1
adjusted_probability += 0.1
# 检查频率分布各向异性 - 这是AI生成的强力指标
if "freq_anisotropy" in image_features and image_features["freq_anisotropy"] < 0.1:
key_ai_features_count += 1
adjusted_probability += 0.1
# 检查细节空间分布 - 这是AI生成的强力指标
if "detail_spatial_std" in image_features and image_features["detail_spatial_std"] < 5:
key_ai_features_count += 1
adjusted_probability += 0.1
# 如果多个关键AI特征同时存在,这是强有力的AI生成证据
if key_ai_features_count >= 2:
adjusted_probability = max(adjusted_probability, 0.7)
# 降低美颜特征对AI判断的影响
# 即使美颜分数高,如果AI特征也明显,仍应判定为AI生成
if beauty_score > 0.6 and ai_feature_score > 0.7:
# 不再降低AI概率,而是保持较高的AI概率
pass
# 如果检测到衣物或手部异常,大幅提高AI概率
if "clothing_angle_uniformity" in image_features and image_features["clothing_angle_uniformity"] > 0.3:
adjusted_probability = max(adjusted_probability, 0.7)
if "extremity_perimeter_area_ratio" in image_features and image_features["extremity_perimeter_area_ratio"] < 0.05:
adjusted_probability = max(adjusted_probability, 0.7)
# 确保概率在0-1范围内
adjusted_probability = min(1.0, max(0.0, adjusted_probability))
# 获取详细分析
category, description, ps_details, ai_details, beauty_details, main_category = get_detailed_analysis(
adjusted_probability, ps_score, beauty_score, ps_signs, ai_signs, beauty_signs, valid_models, ai_feature_score
)
# 构建最终结果
final_result = {
"ai_probability": adjusted_probability,
"original_ai_probability": final_ai_probability,
"ps_score": ps_score,
"beauty_score": beauty_score,
"ai_feature_score": ai_feature_score,
"category": category,
"main_category": main_category,
"description": description,
"ps_details": ps_details,
"ai_details": ai_details,
"beauty_details": beauty_details,
"individual_model_results": results,
"features": image_features
}
# 返回两个值:JSON结果和Label数据
label_data = {main_category: 1.0}
return final_result, label_data
# 创建Gradio界面
iface = gr.Interface(
fn=detect_ai_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.JSON(label="详细分析结果"),
gr.Label(label="主要分类", num_top_classes=1)
],
title="增强型AI图像检测API",
description="多模型集成检测图像是否由AI生成或真人照片(素人/修图)",
examples=None,
allow_flagging="never"
)
iface.launch()
|