ZarinT's picture
Update app.py
c680fd3 verified
raw
history blame
11.4 kB
import streamlit as st
import pandas as pd
import io, os
import subprocess
import pdfplumber
from lxml import etree
from bs4 import BeautifulSoup
from PyPDF2 import PdfReader
from langchain_community.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from langchain.agents import Tool
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import CharacterTextSplitter
from dotenv import load_dotenv
from keybert import KeyBERT
from sentence_transformers import CrossEncoder
import google.generativeai as genai
from typing import List
from langchain_core.language_models import BaseLanguageModel
from langchain_core.runnables import Runnable
import google.generativeai as genai
from datetime import datetime
class GeminiLLM(Runnable):
def __init__(self, model_name="models/gemini-1.5-pro-latest", api_key=None):
self.api_key = api_key or st.secrets["GOOGLE_API_KEY"]
if not self.api_key:
raise ValueError("GOOGLE_API_KEY not found.")
genai.configure(api_key=self.api_key)
self.model = genai.GenerativeModel(model_name)
def _call(self, prompt: str, stop=None) -> str:
response = self.model.generate_content(prompt)
return response.text
@property
def _llm_type(self) -> str:
return "custom_gemini"
def invoke(self, input, config=None):
response = self.model.generate_content(input)
return response.text.strip()
class GeminiEmbeddings(Embeddings):
def __init__(self, model_name="models/embedding-001", api_key=None):
api_key = "AIzaSyBIfGJRoet_wzzYXIiWXxStkIigEOzSR2o"
if not api_key:
raise ValueError("GOOGLE_API_KEY not found in environment variables.")
os.environ["GOOGLE_API_KEY"] = api_key
genai.configure(api_key=api_key)
self.model_name = model_name
def embed_documents(self, texts: List[str]) -> List[List[float]]:
return [
genai.embed_content(
model=self.model_name,
content=text,
task_type="retrieval_document"
)["embedding"]
for text in texts
]
def embed_query(self, text: str) -> List[float]:
return genai.embed_content(
model=self.model_name,
content=text,
task_type="retrieval_query"
)["embedding"]
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
vectorstore_global = None
def load_environment():
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def preload_modtran_document():
global vectorstore_global
embeddings = GeminiEmbeddings()
st.session_state.vectorstore = FAISS.load_local("modtran_vectorstore", embeddings, allow_dangerous_deserialization=True)
set_global_vectorstore(st.session_state.vectorstore)
st.session_state.chat_ready = True
def convert_pdf_to_xml(pdf_file, xml_path):
os.makedirs("temp", exist_ok=True)
pdf_path = os.path.join("temp", pdf_file.name)
with open(pdf_path, 'wb') as f:
f.write(pdf_file.getbuffer())
subprocess.run(["pdftohtml", "-xml", pdf_path, xml_path], check=True)
return xml_path
def extract_text_from_xml(xml_path, document_name):
tree = etree.parse(xml_path)
text_chunks = []
for page in tree.xpath("//page"):
page_num = int(page.get("number", 0))
texts = [text.text for text in page.xpath('.//text') if text.text]
combined_text = '\n'.join(texts)
text_chunks.append({"text": combined_text, "page": page_num, "document": document_name})
return text_chunks
def extract_text_from_pdf(pdf_file, document_name):
text_chunks = []
with pdfplumber.open(pdf_file) as pdf:
for i, page in enumerate(pdf.pages):
text = page.extract_text()
if text:
text_chunks.append({"text": text, "page": i + 1, "document": document_name})
return text_chunks
def get_uploaded_text(uploaded_files):
raw_text = []
for uploaded_file in uploaded_files:
document_name = uploaded_file.name
if document_name.endswith(".pdf"):
text_chunks = extract_text_from_pdf(uploaded_file, document_name)
raw_text.extend(text_chunks)
elif uploaded_file.name.endswith((".html", ".htm")):
soup = BeautifulSoup(uploaded_file.getvalue(), 'lxml')
raw_text.append({"text": soup.get_text(), "page": None, "document": document_name})
elif uploaded_file.name.endswith((".txt")):
content = uploaded_file.getvalue().decode("utf-8")
raw_text.append({"text": content, "page": None, "document": document_name})
return raw_text
def get_text_chunks(raw_text):
splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)
final_chunks = []
for chunk in raw_text:
for split_text in splitter.split_text(chunk["text"]):
final_chunks.append({"text": split_text, "page": chunk["page"], "document": chunk["document"]})
return final_chunks
def get_vectorstore(text_chunks):
if not text_chunks:
raise ValueError("text_chunks is empty. Cannot initialize FAISS vectorstore.")
embeddings = GeminiEmbeddings()
texts = [chunk["text"] for chunk in text_chunks]
metadatas = [{"page": chunk["page"], "document": chunk["document"]} for chunk in text_chunks]
return FAISS.from_texts(texts, embedding=embeddings, metadatas=metadatas)
def set_global_vectorstore(vectorstore):
global vectorstore_global
vectorstore_global = vectorstore
kw_model = KeyBERT()
def self_reasoning(query, context):
llm = GeminiLLM()
reasoning_prompt = f"""
You are an AI assistant that analyzes the context provided to answer the user's query comprehensively and clearly.
Answer in a concise, factual way using the terminology from the context. Avoid extra explanation unless explicitly asked.
YOU MUST mention the page number.
### Example 1:
**Question:** What is the purpose of the MODTRAN GUI?
**Context:**
[Page 10 of the docuemnt] The MODTRAN GUI helps users set parameters and visualize the model's output.
**Answer:** The MODTRAN GUI assists users in parameter setup and output visualization. You can find the answer at Page 10 of the document provided.
### Example 2:
**Question:** How do you run MODTRAN on Linux? Answer with page number.
**Context:**
[Page 15 of the docuemnt] On Linux systems, MODTRAN can be run using the `mod6c` binary via terminal.
**Answer:** Use the `mod6c` binary via terminal. (Page 15 of the document)
### Now answer:
**Question:** {query}
**Context:**
{context}
**Answer:**
"""
return llm._call(reasoning_prompt)
def faiss_search_with_keywords(query):
global vectorstore_global
if vectorstore_global is None:
raise ValueError("FAISS vectorstore is not initialized.")
keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
refined_query = " ".join([keyword[0] for keyword in keywords])
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
docs = retriever.get_relevant_documents(refined_query)
context= '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content}" for doc in docs])
return self_reasoning(query, context)
def faiss_search_with_reasoning(query):
global vectorstore_global
if vectorstore_global is None:
raise ValueError("FAISS vectorstore is not initialized.")
retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
docs = retriever.get_relevant_documents(query)
pairs = [(query, doc.page_content) for doc in docs]
scores = reranker.predict(pairs)
reranked_docs = sorted(zip(scores, docs), key=lambda x: x[0], reverse=True)
top_docs = [doc for _, doc in reranked_docs[:5]]
context = '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content.strip()}" for doc in top_docs])
return self_reasoning(query, context)
faiss_keyword_tool = Tool(
name="FAISS Keyword Search",
func=faiss_search_with_keywords,
description="Searches FAISS with a keyword-based approach to retrieve context."
)
faiss_reasoning_tool = Tool(
name="FAISS Reasoning Search",
func=faiss_search_with_reasoning,
description="Searches FAISS with detailed reasoning to retrieve context."
)
def initialize_chatbot_agent():
llm = GeminiLLM()
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
tools = [faiss_keyword_tool, faiss_reasoning_tool]
agent = initialize_agent(
tools=tools,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
memory=memory,
verbose=False,
handle_parsing_errors=True
)
return agent
def handle_user_query(query):
# Same routing logic as in evaluation.py
global vectorstore_global
if vectorstore_global is None:
raise ValueError("Vectorstore is not initialized.")
if "how" in query.lower():
context = faiss_search_with_reasoning(query)
else:
context = faiss_search_with_keywords(query)
return self_reasoning(query, context)
def main():
load_environment()
if "chat_ready" not in st.session_state:
st.session_state.chat_ready = False
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
st.header("Chat with MODTRAN Documents πŸ“„")
# Preload the document once when app starts
if not st.session_state.chat_ready:
with st.spinner("Loading MODTRAN document..."):
preload_modtran_document()
st.session_state.agent = initialize_chatbot_agent()
st.session_state.chat_ready = True
st.success("MODTRAN User Manual loaded successfully!")
user_question = st.text_input("Ask your question:", key="user_input")
if st.button("Submit") and user_question:
set_global_vectorstore(st.session_state.vectorstore)
response = handle_user_query(user_question)
st.session_state.chat_history.append({"user": user_question, "bot": response})
if "feedback_log" not in st.session_state:
st.session_state.feedback_log = []
for i, chat in enumerate(st.session_state.chat_history):
st.write(f"**You:** {chat['user']}")
st.write(f"**Bot:** {chat['bot']}")
rating = st.radio(
"How would you rate this response?",
options=["1", "2", "3", "4", "5"],
key=f"rating_{i}",
horizontal=True
)
st.session_state.feedback_log.append({
"question": chat["user"],
"answer": chat["bot"],
"rating": rating
})
if st.session_state.feedback_log:
feedback_df = pd.DataFrame(st.session_state.feedback_log)
current_date = datetime.now().strftime("%Y%m%d_%H%M%S")
feedback_df.to_csv(f"feedback_{current_date}.csv", index=False)
if __name__ == "__main__":
load_environment()
main()