File size: 11,373 Bytes
77253fa
c680fd3
8864f7b
77253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6812c83
77253fa
c680fd3
77253fa
 
6812c83
77253fa
 
 
6812c83
77253fa
 
6812c83
 
77253fa
 
 
 
6812c83
77253fa
6812c83
 
 
 
77253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b6d0b
e12828c
 
6812c83
 
28ed593
77253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185f5c0
 
 
 
 
 
 
 
 
77253fa
 
 
 
 
185f5c0
77253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6812c83
77253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6812c83
77253fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28ed593
77253fa
 
 
 
 
 
 
6812c83
 
75b6d0b
d1fa96d
75b6d0b
 
 
 
d1fa96d
40ec004
75b6d0b
 
 
c680fd3
75b6d0b
c680fd3
4e8ef13
28ed593
77253fa
c680fd3
 
 
 
77253fa
c680fd3
77253fa
 
 
c680fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77253fa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import streamlit as st
import pandas as pd
import io, os
import subprocess
import pdfplumber
from lxml import etree
from bs4 import BeautifulSoup
from PyPDF2 import PdfReader
from langchain_community.vectorstores import FAISS
from langchain.embeddings.base import Embeddings
from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from langchain.agents import Tool
from langchain.memory import ConversationBufferMemory
from langchain.text_splitter import CharacterTextSplitter
from dotenv import load_dotenv
from keybert import KeyBERT
from sentence_transformers import CrossEncoder
import google.generativeai as genai
from typing import List
from langchain_core.language_models import BaseLanguageModel
from langchain_core.runnables import Runnable
import google.generativeai as genai
from datetime import datetime


class GeminiLLM(Runnable):
    def __init__(self, model_name="models/gemini-1.5-pro-latest", api_key=None):
        self.api_key = api_key or st.secrets["GOOGLE_API_KEY"]
        if not self.api_key:
            raise ValueError("GOOGLE_API_KEY not found.")
        genai.configure(api_key=self.api_key)
        self.model = genai.GenerativeModel(model_name)
        
    def _call(self, prompt: str, stop=None) -> str:
        response = self.model.generate_content(prompt)
        return response.text

    @property
    def _llm_type(self) -> str:
        return "custom_gemini"
    
    def invoke(self, input, config=None):
        response = self.model.generate_content(input)
        return response.text.strip()

class GeminiEmbeddings(Embeddings):
    def __init__(self, model_name="models/embedding-001", api_key=None):
        api_key = "AIzaSyBIfGJRoet_wzzYXIiWXxStkIigEOzSR2o"
        if not api_key:
            raise ValueError("GOOGLE_API_KEY not found in environment variables.")
        os.environ["GOOGLE_API_KEY"] = api_key
        genai.configure(api_key=api_key)
        self.model_name = model_name

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        return [
            genai.embed_content(
                model=self.model_name,
                content=text,
                task_type="retrieval_document"
            )["embedding"]
            for text in texts
        ]

    def embed_query(self, text: str) -> List[float]:
        return genai.embed_content(
            model=self.model_name,
            content=text,
            task_type="retrieval_query"
        )["embedding"]

reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')

vectorstore_global = None

def load_environment():
    load_dotenv()
    genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

def preload_modtran_document():
    global vectorstore_global
    embeddings = GeminiEmbeddings()
    st.session_state.vectorstore = FAISS.load_local("modtran_vectorstore", embeddings, allow_dangerous_deserialization=True)
    set_global_vectorstore(st.session_state.vectorstore)
    st.session_state.chat_ready = True

def convert_pdf_to_xml(pdf_file, xml_path):
    os.makedirs("temp", exist_ok=True)
    pdf_path = os.path.join("temp", pdf_file.name)
    with open(pdf_path, 'wb') as f:
        f.write(pdf_file.getbuffer())
    subprocess.run(["pdftohtml", "-xml", pdf_path, xml_path], check=True)
    return xml_path

def extract_text_from_xml(xml_path, document_name):
    tree = etree.parse(xml_path)
    text_chunks = []
    for page in tree.xpath("//page"):
        page_num = int(page.get("number", 0))
        texts = [text.text for text in page.xpath('.//text') if text.text]
        combined_text = '\n'.join(texts)
        text_chunks.append({"text": combined_text, "page": page_num, "document": document_name})
    return text_chunks

def extract_text_from_pdf(pdf_file, document_name):
    text_chunks = []
    with pdfplumber.open(pdf_file) as pdf:
        for i, page in enumerate(pdf.pages):
            text = page.extract_text()
            if text:
                text_chunks.append({"text": text, "page": i + 1, "document": document_name})
    return text_chunks

def get_uploaded_text(uploaded_files):
    raw_text = []
    for uploaded_file in uploaded_files:
        document_name = uploaded_file.name
        if document_name.endswith(".pdf"):
            text_chunks = extract_text_from_pdf(uploaded_file, document_name)
            raw_text.extend(text_chunks)
        elif uploaded_file.name.endswith((".html", ".htm")):
            soup = BeautifulSoup(uploaded_file.getvalue(), 'lxml')
            raw_text.append({"text": soup.get_text(), "page": None, "document": document_name})
        elif uploaded_file.name.endswith((".txt")):
            content = uploaded_file.getvalue().decode("utf-8")
            raw_text.append({"text": content, "page": None, "document": document_name})
    return raw_text

def get_text_chunks(raw_text):
    splitter = CharacterTextSplitter(separator='\n', chunk_size=500, chunk_overlap=100)
    final_chunks = []
    for chunk in raw_text:
        for split_text in splitter.split_text(chunk["text"]):
            final_chunks.append({"text": split_text, "page": chunk["page"], "document": chunk["document"]})
    return final_chunks

def get_vectorstore(text_chunks):
    if not text_chunks:
        raise ValueError("text_chunks is empty. Cannot initialize FAISS vectorstore.")

    embeddings = GeminiEmbeddings()
    texts = [chunk["text"] for chunk in text_chunks]
    metadatas = [{"page": chunk["page"], "document": chunk["document"]} for chunk in text_chunks]
    
    return FAISS.from_texts(texts, embedding=embeddings, metadatas=metadatas)

def set_global_vectorstore(vectorstore):
    global vectorstore_global
    vectorstore_global = vectorstore

kw_model = KeyBERT()

def self_reasoning(query, context):
    llm = GeminiLLM()
    reasoning_prompt = f"""
    You are an AI assistant that analyzes the context provided to answer the user's query comprehensively and clearly. 
    Answer in a concise, factual way using the terminology from the context. Avoid extra explanation unless explicitly asked.
    YOU MUST mention the page number. 
    ### Example 1:
    **Question:** What is the purpose of the MODTRAN GUI?
    **Context:**
    [Page 10 of the docuemnt] The MODTRAN GUI helps users set parameters and visualize the model's output.
    **Answer:** The MODTRAN GUI assists users in parameter setup and output visualization. You can find the answer at Page 10 of the document provided.

    ### Example 2:
    **Question:** How do you run MODTRAN on Linux? Answer with page number. 
    **Context:**
    [Page 15 of the docuemnt] On Linux systems, MODTRAN can be run using the `mod6c` binary via terminal.
    **Answer:** Use the `mod6c` binary via terminal. (Page 15 of the document)

    ### Now answer:
    **Question:** {query}
    **Context:**
    {context}

    **Answer:**
    """
    return llm._call(reasoning_prompt)

def faiss_search_with_keywords(query):
    global vectorstore_global
    if vectorstore_global is None:
        raise ValueError("FAISS vectorstore is not initialized.")
    keywords = kw_model.extract_keywords(query, keyphrase_ngram_range=(1,2), stop_words='english', top_n=5)
    refined_query = " ".join([keyword[0] for keyword in keywords])
    retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
    docs = retriever.get_relevant_documents(refined_query)
    context= '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content}" for doc in docs])
    return self_reasoning(query, context)

def faiss_search_with_reasoning(query):
    global vectorstore_global
    if vectorstore_global is None:
        raise ValueError("FAISS vectorstore is not initialized.")
    retriever = vectorstore_global.as_retriever(search_kwargs={"k": 13})
    docs = retriever.get_relevant_documents(query)
    pairs = [(query, doc.page_content) for doc in docs]
    scores = reranker.predict(pairs)
    reranked_docs = sorted(zip(scores, docs), key=lambda x: x[0], reverse=True)
    top_docs = [doc for _, doc in reranked_docs[:5]]
    context = '\n\n'.join([f"[Page {doc.metadata.get('page', 'Unknown')}] {doc.page_content.strip()}" for doc in top_docs])
    return self_reasoning(query, context)

faiss_keyword_tool = Tool(
    name="FAISS Keyword Search",
    func=faiss_search_with_keywords,
    description="Searches FAISS with a keyword-based approach to retrieve context."
)

faiss_reasoning_tool = Tool(
    name="FAISS Reasoning Search",
    func=faiss_search_with_reasoning,
    description="Searches FAISS with detailed reasoning to retrieve context."
)

def initialize_chatbot_agent():
    llm = GeminiLLM() 
    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    tools = [faiss_keyword_tool, faiss_reasoning_tool]
    agent = initialize_agent(
        tools=tools,
        llm=llm,
        agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
        memory=memory,
        verbose=False,
        handle_parsing_errors=True
    )
    return agent

def handle_user_query(query):
    # Same routing logic as in evaluation.py
    global vectorstore_global
    if vectorstore_global is None:
        raise ValueError("Vectorstore is not initialized.")
    
    if "how" in query.lower():
        context = faiss_search_with_reasoning(query)
    else:
        context = faiss_search_with_keywords(query)
    return self_reasoning(query, context)
    
def main():
    load_environment()

    if "chat_ready" not in st.session_state:
        st.session_state.chat_ready = False
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = []
    if "vectorstore" not in st.session_state:
        st.session_state.vectorstore = None

    st.header("Chat with MODTRAN Documents πŸ“„")

    # Preload the document once when app starts
    if not st.session_state.chat_ready:
        with st.spinner("Loading MODTRAN document..."):
            preload_modtran_document()
            st.session_state.agent = initialize_chatbot_agent()
            st.session_state.chat_ready = True
            st.success("MODTRAN User Manual loaded successfully!")

    user_question = st.text_input("Ask your question:", key="user_input")

    if st.button("Submit") and user_question:
        set_global_vectorstore(st.session_state.vectorstore)
        response = handle_user_query(user_question)
        st.session_state.chat_history.append({"user": user_question, "bot": response})
        

    if "feedback_log" not in st.session_state:
        st.session_state.feedback_log = []

    for i, chat in enumerate(st.session_state.chat_history):
        st.write(f"**You:** {chat['user']}")
        st.write(f"**Bot:** {chat['bot']}")

        rating = st.radio(
            "How would you rate this response?",
            options=["1", "2", "3", "4", "5"],
            key=f"rating_{i}",
            horizontal=True
        )

    
        st.session_state.feedback_log.append({
            "question": chat["user"],
            "answer": chat["bot"],
            "rating": rating
        })


   
    if st.session_state.feedback_log:
        feedback_df = pd.DataFrame(st.session_state.feedback_log)
        current_date = datetime.now().strftime("%Y%m%d_%H%M%S")
        feedback_df.to_csv(f"feedback_{current_date}.csv", index=False)

if __name__ == "__main__":
    load_environment()
    main()