opensourcegym / app.py
ZENLLC's picture
Update app.py
9de1645 verified
raw
history blame
3.9 kB
import gradio as gr
from transformers import pipeline
# ===============================
# Model dictionary (lazy loaded)
# ===============================
model_names = {
"DistilGPT-2": "distilgpt2",
"Bloom-560M": "bigscience/bloom-560m",
"OPT-350M": "facebook/opt-350m",
"Flan-T5-Base": "google/flan-t5-base",
"Phi-2": "microsoft/phi-2"
}
loaded_models = {}
summarizer = None # Flan-T5 for cleanup
# ===============================
# Lazy-load helper
# ===============================
def get_model(name):
if name not in loaded_models:
mdl = model_names[name]
if "flan" in mdl.lower():
loaded_models[name] = pipeline("text2text-generation", model=mdl)
else:
loaded_models[name] = pipeline("text-generation", model=mdl)
return loaded_models[name]
def get_summarizer():
global summarizer
if summarizer is None:
summarizer = pipeline("text2text-generation", model="google/flan-t5-base")
return summarizer
# ===============================
# Compare function
# ===============================
def compare_models(user_input, max_new_tokens=100, temperature=0.7):
raw_outputs, clean_outputs = {}, {}
for name in model_names.keys():
try:
generator = get_model(name)
if generator.task == "text-generation":
output = generator(
user_input,
max_new_tokens=max_new_tokens,
temperature=temperature
)[0]["generated_text"]
else: # text2text-generation (Flan)
output = generator(user_input, max_new_tokens=max_new_tokens)[0]["generated_text"]
raw_outputs[name] = output
# Summarize
summary = get_summarizer()("Summarize this: " + output, max_new_tokens=60)[0]["generated_text"]
clean_outputs[name] = summary
except Exception as e:
raw_outputs[name] = f"⚠️ Error: {str(e)}"
clean_outputs[name] = "N/A"
return [raw_outputs[m] for m in model_names.keys()], [clean_outputs[m] for m in model_names.keys()]
# ===============================
# Gradio UI
# ===============================
with gr.Blocks(css="style.css") as demo:
gr.Markdown("## πŸ€– Open-Source Model Comparator\n"
"Compare outputs from open-source LLMs side by side.\n"
"Raw output + a cleaned summary from Flan-T5.")
with gr.Row():
user_input = gr.Textbox(label="Your prompt", placeholder="Try: 'Explain quantum computing in simple terms'", lines=2)
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
max_tokens = gr.Slider(20, 200, value=100, step=10, label="Max new tokens")
temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (temperature)")
gr.Markdown("### πŸ”Ž Raw Outputs")
with gr.Row():
raw_boxes = [gr.Textbox(label=name, elem_classes="output-box", interactive=False) for name in model_names.keys()]
gr.Markdown("### ✨ Cleaned Summaries (Flan-T5)")
with gr.Row():
clean_boxes = [gr.Textbox(label=f"{name} (Summary)", elem_classes="output-box", interactive=False) for name in model_names.keys()]
examples = [
["Explain quantum computing in simple terms."],
["Write a haiku about autumn leaves."],
["What are the pros and cons of nuclear energy?"],
["Describe a futuristic city in the year 2200."],
["Write a funny short story about a robot learning to cook."]
]
gr.Examples(examples=examples, inputs=[user_input])
generate_btn.click(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes)
user_input.submit(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes)
if __name__ == "__main__":
demo.launch()