import gradio as gr from transformers import pipeline # =============================== # Model dictionary (lazy loaded) # =============================== model_names = { "DistilGPT-2": "distilgpt2", "Bloom-560M": "bigscience/bloom-560m", "OPT-350M": "facebook/opt-350m", "Flan-T5-Base": "google/flan-t5-base", "Phi-2": "microsoft/phi-2" } loaded_models = {} summarizer = None # Flan-T5 for cleanup # =============================== # Lazy-load helper # =============================== def get_model(name): if name not in loaded_models: mdl = model_names[name] if "flan" in mdl.lower(): loaded_models[name] = pipeline("text2text-generation", model=mdl) else: loaded_models[name] = pipeline("text-generation", model=mdl) return loaded_models[name] def get_summarizer(): global summarizer if summarizer is None: summarizer = pipeline("text2text-generation", model="google/flan-t5-base") return summarizer # =============================== # Compare function # =============================== def compare_models(user_input, max_new_tokens=100, temperature=0.7): raw_outputs, clean_outputs = {}, {} for name in model_names.keys(): try: generator = get_model(name) if generator.task == "text-generation": output = generator( user_input, max_new_tokens=max_new_tokens, temperature=temperature )[0]["generated_text"] else: # text2text-generation (Flan) output = generator(user_input, max_new_tokens=max_new_tokens)[0]["generated_text"] raw_outputs[name] = output # Summarize summary = get_summarizer()("Summarize this: " + output, max_new_tokens=60)[0]["generated_text"] clean_outputs[name] = summary except Exception as e: raw_outputs[name] = f"⚠️ Error: {str(e)}" clean_outputs[name] = "N/A" return [raw_outputs[m] for m in model_names.keys()], [clean_outputs[m] for m in model_names.keys()] # =============================== # Gradio UI # =============================== with gr.Blocks(css="style.css") as demo: gr.Markdown("## 🤖 Open-Source Model Comparator\n" "Compare outputs from open-source LLMs side by side.\n" "Raw output + a cleaned summary from Flan-T5.") with gr.Row(): user_input = gr.Textbox(label="Your prompt", placeholder="Try: 'Explain quantum computing in simple terms'", lines=2) generate_btn = gr.Button("Generate", variant="primary") with gr.Row(): max_tokens = gr.Slider(20, 200, value=100, step=10, label="Max new tokens") temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (temperature)") gr.Markdown("### 🔎 Raw Outputs") with gr.Row(): raw_boxes = [gr.Textbox(label=name, elem_classes="output-box", interactive=False) for name in model_names.keys()] gr.Markdown("### ✨ Cleaned Summaries (Flan-T5)") with gr.Row(): clean_boxes = [gr.Textbox(label=f"{name} (Summary)", elem_classes="output-box", interactive=False) for name in model_names.keys()] examples = [ ["Explain quantum computing in simple terms."], ["Write a haiku about autumn leaves."], ["What are the pros and cons of nuclear energy?"], ["Describe a futuristic city in the year 2200."], ["Write a funny short story about a robot learning to cook."] ] gr.Examples(examples=examples, inputs=[user_input]) generate_btn.click(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes) user_input.submit(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes) if __name__ == "__main__": demo.launch()