File size: 3,811 Bytes
225b06d
 
 
aa7d3d1
 
 
225b06d
aa7d3d1
 
 
 
 
 
 
 
 
 
225b06d
 
aa7d3d1
 
 
 
 
 
 
 
 
 
 
225b06d
aa7d3d1
 
 
225b06d
aa7d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225b06d
aa7d3d1
 
 
 
225b06d
aa7d3d1
 
 
225b06d
 
aa7d3d1
 
225b06d
 
aa7d3d1
225b06d
 
 
 
 
 
aa7d3d1
 
 
 
 
225b06d
aa7d3d1
225b06d
 
 
 
 
 
aa7d3d1
225b06d
 
 
aa7d3d1
 
225b06d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import gradio as gr
from transformers import pipeline

# ===============================
# Load open-source text generation models
# ===============================
models = {
    "DistilGPT-2": "distilgpt2",
    "GPT2 (Small)": "gpt2",
    "DialoGPT-small": "microsoft/DialoGPT-small",
    "OPT-350M": "facebook/opt-350m",
    "Bloom-560M": "bigscience/bloom-560m",
    "GPT-Neo-125M": "EleutherAI/gpt-neo-125M",
    "Falcon-RW-1B": "tiiuae/falcon-rw-1b",
    "Flan-T5-Small": "google/flan-t5-small",
    "Flan-T5-Base": "google/flan-t5-base",
    "Phi-2": "microsoft/phi-2"
}

generators = {name: pipeline("text-generation", model=mdl) 
              if "flan" not in mdl.lower() and "bart" not in mdl.lower()
              else pipeline("text2text-generation", model=mdl)
              for name, mdl in models.items()}

# Summarizer model
summarizer = pipeline("text2text-generation", model="google/flan-t5-base")

# ===============================
# Function to query all models
# ===============================
def compare_models(user_input, max_new_tokens=100, temperature=0.7):
    raw_outputs = {}
    clean_outputs = {}
    for name, generator in generators.items():
        try:
            if "text-generation" in generator.task:
                output = generator(
                    user_input,
                    max_new_tokens=max_new_tokens,
                    temperature=temperature
                )[0]["generated_text"]
            else:  # Flan models etc
                output = generator(user_input, max_new_tokens=max_new_tokens)[0]["generated_text"]

            raw_outputs[name] = output

            # Summarize the answer to improve clarity
            summary = summarizer("Summarize this: " + output, max_new_tokens=60)[0]["generated_text"]
            clean_outputs[name] = summary

        except Exception as e:
            raw_outputs[name] = f"⚠️ Error: {str(e)}"
            clean_outputs[name] = "N/A"

    return [raw_outputs[m] for m in models.keys()], [clean_outputs[m] for m in models.keys()]

# ===============================
# Gradio UI
# ===============================
with gr.Blocks(css="style.css") as demo:
    gr.Markdown("## 🤖 Open-Source Model Comparator\n"
                "Compare outputs from multiple open-source LLMs side by side.\n"
                "Includes a raw output and a cleaned summary (via Flan-T5).")

    with gr.Row():
        user_input = gr.Textbox(label="Your prompt", placeholder="Try: 'Explain quantum computing in simple terms'", lines=2)
        generate_btn = gr.Button("Generate", variant="primary")

    with gr.Row():
        max_tokens = gr.Slider(20, 200, value=100, step=10, label="Max new tokens")
        temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (temperature)")

    gr.Markdown("### 🔎 Raw Outputs")
    with gr.Row():
        raw_boxes = [gr.Textbox(label=name, elem_classes="output-box", interactive=False) for name in models.keys()]

    gr.Markdown("### ✨ Cleaned Summaries (Flan-T5)")
    with gr.Row():
        clean_boxes = [gr.Textbox(label=f"{name} (Summary)", elem_classes="output-box", interactive=False) for name in models.keys()]

    examples = [
        ["Explain quantum computing in simple terms."],
        ["Write a haiku about autumn leaves."],
        ["What are the pros and cons of nuclear energy?"],
        ["Describe a futuristic city in the year 2200."],
        ["Write a funny short story about a robot learning to cook."]
    ]
    gr.Examples(examples=examples, inputs=[user_input])

    generate_btn.click(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes)
    user_input.submit(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes)

if __name__ == "__main__":
    demo.launch()