ZENLLC commited on
Commit
aa7d3d1
·
verified ·
1 Parent(s): 456ba0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -18
app.py CHANGED
@@ -1,51 +1,94 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # Load multiple open-source models (lightweight for CPU-basic)
 
 
5
  models = {
6
- "DistilGPT-2": pipeline("text-generation", model="distilgpt2"),
7
- "GPT2 (Small)": pipeline("text-generation", model="gpt2"),
8
- "DialoGPT-small": pipeline("text-generation", model="microsoft/DialoGPT-small"),
9
- "OPT-350M": pipeline("text-generation", model="facebook/opt-350m"),
10
- "Bloom-560M": pipeline("text-generation", model="bigscience/bloom-560m"),
 
 
 
 
 
11
  }
12
 
 
 
 
 
 
 
 
 
 
 
 
13
  def compare_models(user_input, max_new_tokens=100, temperature=0.7):
14
- results = {}
15
- for name, generator in models.items():
 
16
  try:
17
- output = generator(user_input, max_new_tokens=max_new_tokens, temperature=temperature)[0]["generated_text"]
18
- results[name] = output
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  except Exception as e:
20
- results[name] = f"⚠️ Error: {str(e)}"
21
- return [results[m] for m in models.keys()]
 
 
22
 
 
 
 
23
  with gr.Blocks(css="style.css") as demo:
24
  gr.Markdown("## 🤖 Open-Source Model Comparator\n"
25
- "Type a prompt once, see how different open-source LLMs respond side-by-side.")
 
26
 
27
  with gr.Row():
28
- user_input = gr.Textbox(label="Your prompt", placeholder="Ask something like 'Write a short poem about the stars'...", lines=2)
29
  generate_btn = gr.Button("Generate", variant="primary")
30
 
31
  with gr.Row():
32
  max_tokens = gr.Slider(20, 200, value=100, step=10, label="Max new tokens")
33
  temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (temperature)")
34
 
 
 
 
 
 
35
  with gr.Row():
36
- outputs = [gr.Textbox(label=name, elem_classes="output-box", interactive=False) for name in models.keys()]
37
 
38
  examples = [
39
  ["Explain quantum computing in simple terms."],
40
  ["Write a haiku about autumn leaves."],
41
  ["What are the pros and cons of nuclear energy?"],
42
  ["Describe a futuristic city in the year 2200."],
43
- ["Write a funny short story about a robot learning to cook."],
44
  ]
45
  gr.Examples(examples=examples, inputs=[user_input])
46
 
47
- generate_btn.click(compare_models, inputs=[user_input, max_tokens, temp], outputs=outputs)
48
- user_input.submit(compare_models, inputs=[user_input, max_tokens, temp], outputs=outputs)
49
 
50
  if __name__ == "__main__":
51
  demo.launch()
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
+ # ===============================
5
+ # Load open-source text generation models
6
+ # ===============================
7
  models = {
8
+ "DistilGPT-2": "distilgpt2",
9
+ "GPT2 (Small)": "gpt2",
10
+ "DialoGPT-small": "microsoft/DialoGPT-small",
11
+ "OPT-350M": "facebook/opt-350m",
12
+ "Bloom-560M": "bigscience/bloom-560m",
13
+ "GPT-Neo-125M": "EleutherAI/gpt-neo-125M",
14
+ "Falcon-RW-1B": "tiiuae/falcon-rw-1b",
15
+ "Flan-T5-Small": "google/flan-t5-small",
16
+ "Flan-T5-Base": "google/flan-t5-base",
17
+ "Phi-2": "microsoft/phi-2"
18
  }
19
 
20
+ generators = {name: pipeline("text-generation", model=mdl)
21
+ if "flan" not in mdl.lower() and "bart" not in mdl.lower()
22
+ else pipeline("text2text-generation", model=mdl)
23
+ for name, mdl in models.items()}
24
+
25
+ # Summarizer model
26
+ summarizer = pipeline("text2text-generation", model="google/flan-t5-base")
27
+
28
+ # ===============================
29
+ # Function to query all models
30
+ # ===============================
31
  def compare_models(user_input, max_new_tokens=100, temperature=0.7):
32
+ raw_outputs = {}
33
+ clean_outputs = {}
34
+ for name, generator in generators.items():
35
  try:
36
+ if "text-generation" in generator.task:
37
+ output = generator(
38
+ user_input,
39
+ max_new_tokens=max_new_tokens,
40
+ temperature=temperature
41
+ )[0]["generated_text"]
42
+ else: # Flan models etc
43
+ output = generator(user_input, max_new_tokens=max_new_tokens)[0]["generated_text"]
44
+
45
+ raw_outputs[name] = output
46
+
47
+ # Summarize the answer to improve clarity
48
+ summary = summarizer("Summarize this: " + output, max_new_tokens=60)[0]["generated_text"]
49
+ clean_outputs[name] = summary
50
+
51
  except Exception as e:
52
+ raw_outputs[name] = f"⚠️ Error: {str(e)}"
53
+ clean_outputs[name] = "N/A"
54
+
55
+ return [raw_outputs[m] for m in models.keys()], [clean_outputs[m] for m in models.keys()]
56
 
57
+ # ===============================
58
+ # Gradio UI
59
+ # ===============================
60
  with gr.Blocks(css="style.css") as demo:
61
  gr.Markdown("## 🤖 Open-Source Model Comparator\n"
62
+ "Compare outputs from multiple open-source LLMs side by side.\n"
63
+ "Includes a raw output and a cleaned summary (via Flan-T5).")
64
 
65
  with gr.Row():
66
+ user_input = gr.Textbox(label="Your prompt", placeholder="Try: 'Explain quantum computing in simple terms'", lines=2)
67
  generate_btn = gr.Button("Generate", variant="primary")
68
 
69
  with gr.Row():
70
  max_tokens = gr.Slider(20, 200, value=100, step=10, label="Max new tokens")
71
  temp = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Creativity (temperature)")
72
 
73
+ gr.Markdown("### 🔎 Raw Outputs")
74
+ with gr.Row():
75
+ raw_boxes = [gr.Textbox(label=name, elem_classes="output-box", interactive=False) for name in models.keys()]
76
+
77
+ gr.Markdown("### ✨ Cleaned Summaries (Flan-T5)")
78
  with gr.Row():
79
+ clean_boxes = [gr.Textbox(label=f"{name} (Summary)", elem_classes="output-box", interactive=False) for name in models.keys()]
80
 
81
  examples = [
82
  ["Explain quantum computing in simple terms."],
83
  ["Write a haiku about autumn leaves."],
84
  ["What are the pros and cons of nuclear energy?"],
85
  ["Describe a futuristic city in the year 2200."],
86
+ ["Write a funny short story about a robot learning to cook."]
87
  ]
88
  gr.Examples(examples=examples, inputs=[user_input])
89
 
90
+ generate_btn.click(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes)
91
+ user_input.submit(compare_models, inputs=[user_input, max_tokens, temp], outputs=raw_boxes + clean_boxes)
92
 
93
  if __name__ == "__main__":
94
  demo.launch()