InteractGPT-API / api.py
Yuchan5386's picture
Update api.py
9ab8176 verified
raw
history blame
8.08 kB
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import sentencepiece as spm
app = FastAPI()
from fastapi.middleware.cors import CORSMiddleware
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, 시퀀스길이 max_len
_ = model(dummy_input) # 모델이 빌드됨
model.load_weights("InteractGPT.weights.h5")
print("모델 가중치 로드 완료!")
def generate_text_top_kp(model, prompt, max_len=100, max_gen=98,
temperature=1.0, min_len=20,
repetition_penalty=1.1, top_k=40, top_p=0.9):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
for step in range(max_gen):
pad_len = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_logits = logits[0, len(generated) - 1].numpy()
# 반복 억제
for t in set(generated):
count = generated.count(t)
next_logits[t] /= (repetition_penalty ** count)
# 조기 종료 방지
if len(generated) < min_len:
next_logits[end_id] -= 5.0
next_logits[pad_id] -= 10.0
# 온도 적용
next_logits = next_logits / temperature
probs = np.exp(next_logits - np.max(next_logits))
probs /= probs.sum()
# Top-K 적용
top_k = min(top_k, len(probs))
top_k_idx = np.argsort(-probs)[:top_k]
top_k_probs = probs[top_k_idx]
top_k_probs /= top_k_probs.sum()
# Top-P 필터링
sorted_idx = np.argsort(-top_k_probs)
sorted_probs = top_k_probs[sorted_idx]
cum_probs = np.cumsum(sorted_probs)
cutoff = np.searchsorted(cum_probs, top_p) + 1
final_idx = top_k_idx[sorted_idx[:cutoff]]
final_probs = sorted_probs[:cutoff]
final_probs /= final_probs.sum()
sampled = np.random.choice(final_idx, p=final_probs)
generated.append(int(sampled))
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
decoded = decoded.strip()
if len(generated) >= min_len and (sampled == end_id or decoded.endswith(('.', '!', '?'))):
yield decoded
break
async def async_generator_wrapper(prompt: str):
gen = generate_text_top_kp(model, prompt)
for text_piece in gen:
yield text_piece
await asyncio.sleep(0.1)
@app.get("/generate")
async def generate(request: Request):
prompt = request.query_params.get("prompt", "안녕하세요")
return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain")