Spaces:
Sleeping
Sleeping
Update api.py
Browse files
api.py
CHANGED
@@ -138,9 +138,9 @@ _ = model(dummy_input) # 모델이 빌드됨
|
|
138 |
model.load_weights("InteractGPT.weights.h5")
|
139 |
print("모델 가중치 로드 완료!")
|
140 |
|
141 |
-
def
|
142 |
-
|
143 |
-
|
144 |
model_input = text_to_ids(f"<start> {prompt} <sep>")
|
145 |
model_input = model_input[:max_len]
|
146 |
generated = list(model_input)
|
@@ -153,12 +153,12 @@ def generate_text_top_p(model, prompt, max_len=100, max_gen=98,
|
|
153 |
logits = model(input_tensor, training=False)
|
154 |
next_logits = logits[0, len(generated) - 1].numpy()
|
155 |
|
156 |
-
# 반복 억제
|
157 |
for t in set(generated):
|
158 |
count = generated.count(t)
|
159 |
next_logits[t] /= (repetition_penalty ** count)
|
160 |
|
161 |
-
# 종료
|
162 |
if len(generated) < min_len:
|
163 |
next_logits[end_id] -= 5.0
|
164 |
next_logits[pad_id] -= 10.0
|
@@ -168,17 +168,23 @@ def generate_text_top_p(model, prompt, max_len=100, max_gen=98,
|
|
168 |
probs = np.exp(next_logits - np.max(next_logits))
|
169 |
probs /= probs.sum()
|
170 |
|
171 |
-
# Top-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
cum_probs = np.cumsum(sorted_probs)
|
175 |
cutoff = np.searchsorted(cum_probs, top_p) + 1
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
sampled = np.random.choice(
|
182 |
generated.append(int(sampled))
|
183 |
|
184 |
decoded = sp.decode(generated)
|
@@ -189,9 +195,9 @@ def generate_text_top_p(model, prompt, max_len=100, max_gen=98,
|
|
189 |
if len(generated) >= min_len and (sampled == end_id or decoded.endswith(('.', '!', '?'))):
|
190 |
yield decoded
|
191 |
break
|
192 |
-
|
193 |
async def async_generator_wrapper(prompt: str):
|
194 |
-
gen =
|
195 |
for text_piece in gen:
|
196 |
yield text_piece
|
197 |
await asyncio.sleep(0.1)
|
|
|
138 |
model.load_weights("InteractGPT.weights.h5")
|
139 |
print("모델 가중치 로드 완료!")
|
140 |
|
141 |
+
def generate_text_top_kp(model, prompt, max_len=100, max_gen=98,
|
142 |
+
temperature=1.0, min_len=20,
|
143 |
+
repetition_penalty=1.1, top_k=40, top_p=0.9):
|
144 |
model_input = text_to_ids(f"<start> {prompt} <sep>")
|
145 |
model_input = model_input[:max_len]
|
146 |
generated = list(model_input)
|
|
|
153 |
logits = model(input_tensor, training=False)
|
154 |
next_logits = logits[0, len(generated) - 1].numpy()
|
155 |
|
156 |
+
# 반복 억제
|
157 |
for t in set(generated):
|
158 |
count = generated.count(t)
|
159 |
next_logits[t] /= (repetition_penalty ** count)
|
160 |
|
161 |
+
# 조기 종료 방지
|
162 |
if len(generated) < min_len:
|
163 |
next_logits[end_id] -= 5.0
|
164 |
next_logits[pad_id] -= 10.0
|
|
|
168 |
probs = np.exp(next_logits - np.max(next_logits))
|
169 |
probs /= probs.sum()
|
170 |
|
171 |
+
# Top-K 적용
|
172 |
+
top_k = min(top_k, len(probs))
|
173 |
+
top_k_idx = np.argsort(-probs)[:top_k]
|
174 |
+
top_k_probs = probs[top_k_idx]
|
175 |
+
top_k_probs /= top_k_probs.sum()
|
176 |
+
|
177 |
+
# Top-P 필터링
|
178 |
+
sorted_idx = np.argsort(-top_k_probs)
|
179 |
+
sorted_probs = top_k_probs[sorted_idx]
|
180 |
cum_probs = np.cumsum(sorted_probs)
|
181 |
cutoff = np.searchsorted(cum_probs, top_p) + 1
|
182 |
|
183 |
+
final_idx = top_k_idx[sorted_idx[:cutoff]]
|
184 |
+
final_probs = sorted_probs[:cutoff]
|
185 |
+
final_probs /= final_probs.sum()
|
186 |
|
187 |
+
sampled = np.random.choice(final_idx, p=final_probs)
|
188 |
generated.append(int(sampled))
|
189 |
|
190 |
decoded = sp.decode(generated)
|
|
|
195 |
if len(generated) >= min_len and (sampled == end_id or decoded.endswith(('.', '!', '?'))):
|
196 |
yield decoded
|
197 |
break
|
198 |
+
|
199 |
async def async_generator_wrapper(prompt: str):
|
200 |
+
gen = generate_text_top_kp(model, prompt)
|
201 |
for text_piece in gen:
|
202 |
yield text_piece
|
203 |
await asyncio.sleep(0.1)
|