File size: 14,143 Bytes
35d657e
 
 
92805cb
35d657e
 
9b8d3c9
5848124
5d5ac47
9b8d3c9
 
 
 
5bef4d8
 
 
d348825
 
 
 
 
 
 
 
 
 
 
 
 
 
9cad8b1
 
 
 
 
 
 
 
e57c7af
9cad8b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a45d3f4
9cad8b1
35d657e
70b0917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f74fef
 
7f80084
35df76e
b3998ae
 
0abe2b5
257ebb3
7f80084
0abe2b5
 
 
 
 
 
7f80084
 
 
 
0abe2b5
7f80084
 
 
 
 
 
35df76e
 
 
 
 
 
 
 
 
 
 
 
 
 
7f80084
 
 
 
 
0abe2b5
 
 
 
 
 
 
3b062a6
0abe2b5
 
3b062a6
0abe2b5
 
 
 
b3998ae
dcd1d9c
 
 
 
9ab8176
dcd1d9c
0a400c9
 
 
 
 
 
 
 
 
 
 
 
 
dcd1d9c
0a400c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34115e3
 
 
 
dcd1d9c
34115e3
 
 
 
 
 
 
 
dcd1d9c
34115e3
 
 
 
 
 
 
 
 
 
 
 
 
 
6617185
 
 
 
 
9f5ee66
 
0a400c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bef4d8
0a400c9
 
 
 
99cb8d0
0a400c9
 
99cb8d0
0a400c9
 
5bef4d8
0a400c9
 
5bef4d8
dcd1d9c
0a400c9
 
 
 
34115e3
2812b06
0a400c9
5bef4d8
7f80084
dcd1d9c
7f80084
dcd1d9c
d893b18
 
35d657e
 
6a8da97
d893b18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers  
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
import re
import math
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

app = FastAPI()    


from fastapi.middleware.cors import CORSMiddleware

origins = [
    "https://insect5386.github.io",
    "https://insect5386.github.io/insect5386"
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
      
sp = spm.SentencePieceProcessor()      
sp.load("kolig_unigram.model")      
      
pad_id = sp.piece_to_id("<pad>")      
if pad_id == -1: pad_id = 0      
start_id = sp.piece_to_id("<start>")      
if start_id == -1: start_id = 1      
end_id = sp.piece_to_id("<end>")      
if end_id == -1: end_id = 2      
unk_id = sp.piece_to_id("<unk>")      
if unk_id == -1: unk_id = 3      
      
vocab_size = sp.get_piece_size()      
max_len = 100      
      
def text_to_ids(text):      
    return sp.encode(text, out_type=int)      
      
def ids_to_text(ids):      
    return sp.decode(ids)      
    
class RotaryPositionalEmbedding(layers.Layer):      
    def __init__(self, dim):      
        super().__init__()      
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))      
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)      
      
    def call(self, x):      
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))      
        t = tf.range(seq_len, dtype=tf.float32)      
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)      
        emb_sin = tf.sin(freqs)      
        emb_cos = tf.cos(freqs)      
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])      
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])      
        x1 = x[..., ::2]      
        x2 = x[..., 1::2]      
        x_rotated = tf.stack([      
            x1 * emb_cos - x2 * emb_sin,      
            x1 * emb_sin + x2 * emb_cos      
        ], axis=-1)      
        x_rotated = tf.reshape(x_rotated, tf.shape(x))      
        return x_rotated    
    
class SwiGLU(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff):    
        super().__init__()    
        self.proj = tf.keras.layers.Dense(d_ff * 2)    
        self.out = tf.keras.layers.Dense(d_model)    
    
    def call(self, x):    
        x_proj = self.proj(x)    
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)    
        return self.out(x_val * tf.nn.silu(x_gate))    
            
class GPTBlock(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):      
        super().__init__()      
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)      
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate)     
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')     
        self.adapter_up = tf.keras.layers.Dense(d_model)      
      
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
        self.ffn = SwiGLU(d_model, d_ff)      
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate)     
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)      
      
    def call(self, x, training=False):      
        x_norm = self.ln1(x)      
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]      
        h = self.mha.num_heads      
        d = x_norm.shape[-1] // h      
      
        qkv = tf.reshape(x_norm, [b, s, h, d])      
        qkv = tf.transpose(qkv, [0, 2, 1, 3])      
        q = self.rope(qkv)      
        k = self.rope(qkv)      
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])      
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])      
      
        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)      
        attn_out = self.dropout1(attn_out, training=training)      
    
        adapter_out = self.adapter_up(self.adapter_down(attn_out))    
        attn_out = attn_out + adapter_out      
      
        x = x + attn_out      
        ffn_out = self.ffn(self.ln2(x))      
        x = x + self.dropout2(ffn_out, training=training)      
        return x    
    
class InteractGPT(tf.keras.Model):      
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):      
        super().__init__()      
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)      
        self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]      
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
      
    def call(self, x, training=False):      
        x = self.token_embedding(x)      
        for block in self.blocks:      
            x = block(x, training=training)      
        x = self.ln_f(x)      
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)      
        return logits      
    
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)        
      
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)  # 배치1, 시퀀스길이 max_len      
_ = model(dummy_input)  # 모델이 빌드됨      
model.load_weights("Flexi.weights.h5")      
print("모델 가중치 로드 완료!")      

  
def is_greedy_response_acceptable(text):  
    text = text.strip()  
  
    # 너무 짧은 문장 거르기  
    if len(text) < 5:  
        return False  
  
    # 단어 수 너무 적은 것도 거름  
    if len(text.split()) < 3:  
        return False  
  
    # ㅋㅋㅋ 같은 자모 연속만 있으면 거름 (단, 'ㅋㅋ' 포함되면 허용)  
    if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', text) and 'ㅋㅋ' not in text:  
        return False  
  
    # 문장 끝이 어색한 경우 (다/요/죠 등 일반적 형태로 끝나지 않으면 거름)  
    if not re.search(r'(다|요|죠|다\.|요\.|죠\.|다!|요!|죠!|\!|\?|\.)$', text):  
        return False  
  
    return True

def generate_text_sample(model, prompt, max_len=100, max_gen=98,
                         temperature=0.7, top_k=40, top_p=0.9, min_len=12):
    model_input = text_to_ids(f"<start> {prompt} <sep>")
    model_input = model_input[:max_len]
    generated = list(model_input)

    for _ in range(max_gen):
        pad_len = max(0, max_len - len(generated))
        input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
        input_tensor = tf.convert_to_tensor([input_padded])
        logits = model(input_tensor, training=False)
        next_logits = logits[0, len(generated) - 1].numpy()

        # Temperature 적용
        next_logits = next_logits / temperature
        probs = np.exp(next_logits - np.max(next_logits))
        probs = probs / probs.sum()

        # Top-K 필터링
        if top_k is not None and top_k > 0:
            indices_to_remove = probs < np.sort(probs)[-top_k]
            probs[indices_to_remove] = 0
            probs /= probs.sum()

        # Top-P (누적 확률) 필터링
        if top_p is not None and 0 < top_p < 1:
            sorted_indices = np.argsort(probs)[::-1]
            sorted_probs = probs[sorted_indices]
            cumulative_probs = np.cumsum(sorted_probs)
            # 누적 확률이 top_p 초과하는 토큰들은 제거
            cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right')
            probs_to_keep = sorted_indices[:cutoff_index+1]
            
            mask = np.ones_like(probs, dtype=bool)
            mask[probs_to_keep] = False
            probs[mask] = 0
            probs /= probs.sum()

        # 샘플링
        next_token = np.random.choice(len(probs), p=probs)
        generated.append(int(next_token))

        # 디코딩 및 후처리
        decoded = sp.decode(generated)
        for t in ["<start>", "<sep>", "<end>"]:
            decoded = decoded.replace(t, "")
        decoded = decoded.strip()

        if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('요', '다', '.', '!', '?'))):
            if is_greedy_response_acceptable(decoded):
                return decoded
            else:
                continue

    decoded = sp.decode(generated)
    for t in ["<start>", "<sep>", "<end>"]:
        decoded = decoded.replace(t, "")
    return decoded.strip()
    
def mismatch_tone(input_text, output_text):  
    if "ㅋㅋ" in input_text and not re.search(r'ㅋㅋ|ㅎ|재밌|놀|만나|맛집|여행', output_text):  
        return True  
    return False

# 유효한 응답인지 검사
def is_valid_response(response):
    if len(response.strip()) < 2:
        return False
    if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', response):
        return False
    if len(response.split()) < 2:
        return False
    if response.count(' ') < 2:
        return False
    if any(tok in response.lower() for tok in ['hello', 'this', 'ㅋㅋ']):
        return False
    return True

# 위키 요약 관련
def extract_main_query(text):
    sentences = re.split(r'[.?!]\s*', text)
    sentences = [s.strip() for s in sentences if s.strip()]
    if not sentences:
        return text
    last = sentences[-1]
    last = re.sub(r'[^가-힣a-zA-Z0-9 ]', '', last)
    particles = ['이', '가', '은', '는', '을', '를', '의', '에서', '에게', '한테', '보다']
    for p in particles:
        last = re.sub(rf'\b(\w+){p}\b', r'\1', last)
    return last.strip()

def get_wikipedia_summary(query):
    cleaned_query = extract_main_query(query)
    url = f"https://ko.wikipedia.org/api/rest_v1/page/summary/{cleaned_query}"
    res = requests.get(url)
    if res.status_code == 200:
        return res.json().get("extract", "요약 정보를 찾을 수 없습니다.")
    else:
        return "위키백과에서 정보를 가져올 수 없습니다."

def textrank_summarize(text, top_n=3):
    sentences = re.split(r'(?<=[.!?])\s+', text.strip())
    sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
    if len(sentences) <= top_n:
        return text
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(sentences)
    sim_matrix = cosine_similarity(tfidf_matrix)
    np.fill_diagonal(sim_matrix, 0)
    def pagerank(matrix, damping=0.85, max_iter=100, tol=1e-4):
        N = matrix.shape[0]
        ranks = np.ones(N) / N
        row_sums = np.sum(matrix, axis=1)
        row_sums[row_sums == 0] = 1
        for _ in range(max_iter):
            prev_ranks = ranks.copy()
            for i in range(N):
                incoming = matrix[:, i]
                ranks[i] = (1 - damping) / N + damping * np.sum(incoming * prev_ranks / row_sums)
            if np.linalg.norm(ranks - prev_ranks) < tol:
                break
        return ranks
    scores = pagerank(sim_matrix)
    ranked_idx = np.argsort(scores)[::-1]
    selected_idx = sorted(ranked_idx[:top_n])
    summary = ' '.join([sentences[i] for i in selected_idx])
    return summary

def summarize_from_wikipedia(query, top_n=3):  
    raw_summary = get_wikipedia_summary(query)  
    first_summary = textrank_summarize(raw_summary, top_n=top_n)  
    second_summary = textrank_summarize(first_summary, top_n=top_n)  
    return second_summary


def simple_intent_classifier(text):
    text = text.lower()
    greet_keywords = ["안녕", "반가워", "이름", "누구", "소개", "어디서 왔", "정체", "몇 살", "너 뭐야"]
    info_keywords = ["설명", "정보", "무엇", "뭐야", "어디", "누구", "왜", "어떻게", "종류", "개념"]
    math_keywords = ["더하기", "빼기", "곱하기", "나누기", "루트", "제곱", "+", "-", "*", "/", "=", "^", "√", "계산", "몇이야", "얼마야"]
    if any(kw in text for kw in greet_keywords):
        return "인사"
    elif any(kw in text for kw in info_keywords):
        return "정보질문"
    elif any(kw in text for kw in math_keywords):
        return "수학질문"
    else:
        return "일상대화"

def parse_math_question(text):
    text = text.replace("곱하기", "*").replace("더하기", "+").replace("빼기", "-").replace("나누기", "/").replace("제곱", "*2")
    text = re.sub(r'루트\s(\d+)', r'math.sqrt(\1)', text)
    try:
        result = eval(text)
        return f"정답은 {result}입니다."
    except:
        return "계산할 수 없는 수식이에요. 다시 한번 확인해 주세요!"

# 최종 응답 함수
def respond(input_text):
    intent = simple_intent_classifier(input_text)

    if "이름" in input_text:
        return "제 이름은 InteractGPT입니다."

    if "누구" in input_text:
        return "저는 InteractGPT라고 해요."

    if intent == "수학질문":
        return parse_math_question(input_text)

    if intent == "인사":
        return "반가워요! 무엇을 도와드릴까요?"

    if intent == "정보질문":
        keyword = re.sub(r"(에 대해|에 대한|에 대해서)?\s*(설명해줘|알려줘|뭐야|개념|정의|정보)?", "", input_text).strip()
        if not keyword:
            return "어떤 주제에 대해 궁금한가요?"
        summary = summarize_from_wikipedia(keyword)
        return f"{summary}\n다른 궁금한 점 있으신가요?"

    # 일상 대화: 샘플링 + fallback
    response = generate_text_sample(model, input_text)
    if not is_valid_response(response) or mismatch_tone(input_text, response):
        response = generate_text_sample(model, input_text)
    return response

@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
    prompt = request.query_params.get("prompt", "안녕하세요")
    response_text = respond(prompt)
    return response_text