Spaces:
Sleeping
Sleeping
File size: 14,143 Bytes
35d657e 92805cb 35d657e 9b8d3c9 5848124 5d5ac47 9b8d3c9 5bef4d8 d348825 9cad8b1 e57c7af 9cad8b1 a45d3f4 9cad8b1 35d657e 70b0917 3f74fef 7f80084 35df76e b3998ae 0abe2b5 257ebb3 7f80084 0abe2b5 7f80084 0abe2b5 7f80084 35df76e 7f80084 0abe2b5 3b062a6 0abe2b5 3b062a6 0abe2b5 b3998ae dcd1d9c 9ab8176 dcd1d9c 0a400c9 dcd1d9c 0a400c9 34115e3 dcd1d9c 34115e3 dcd1d9c 34115e3 6617185 9f5ee66 0a400c9 5bef4d8 0a400c9 99cb8d0 0a400c9 99cb8d0 0a400c9 5bef4d8 0a400c9 5bef4d8 dcd1d9c 0a400c9 34115e3 2812b06 0a400c9 5bef4d8 7f80084 dcd1d9c 7f80084 dcd1d9c d893b18 35d657e 6a8da97 d893b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, PlainTextResponse
import sentencepiece as spm
import re
import math
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
app = FastAPI()
from fastapi.middleware.cors import CORSMiddleware
origins = [
"https://insect5386.github.io",
"https://insect5386.github.io/insect5386"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
sp = spm.SentencePieceProcessor()
sp.load("kolig_unigram.model")
pad_id = sp.piece_to_id("<pad>")
if pad_id == -1: pad_id = 0
start_id = sp.piece_to_id("<start>")
if start_id == -1: start_id = 1
end_id = sp.piece_to_id("<end>")
if end_id == -1: end_id = 2
unk_id = sp.piece_to_id("<unk>")
if unk_id == -1: unk_id = 3
vocab_size = sp.get_piece_size()
max_len = 100
def text_to_ids(text):
return sp.encode(text, out_type=int)
def ids_to_text(ids):
return sp.decode(ids)
class RotaryPositionalEmbedding(layers.Layer):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)
def call(self, x):
batch, heads, seq_len, depth = tf.unstack(tf.shape(x))
t = tf.range(seq_len, dtype=tf.float32)
freqs = tf.einsum('i,j->ij', t, self.inv_freq)
emb_sin = tf.sin(freqs)
emb_cos = tf.cos(freqs)
emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])
emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])
x1 = x[..., ::2]
x2 = x[..., 1::2]
x_rotated = tf.stack([
x1 * emb_cos - x2 * emb_sin,
x1 * emb_sin + x2 * emb_cos
], axis=-1)
x_rotated = tf.reshape(x_rotated, tf.shape(x))
return x_rotated
class SwiGLU(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff):
super().__init__()
self.proj = tf.keras.layers.Dense(d_ff * 2)
self.out = tf.keras.layers.Dense(d_model)
def call(self, x):
x_proj = self.proj(x)
x_val, x_gate = tf.split(x_proj, 2, axis=-1)
return self.out(x_val * tf.nn.silu(x_gate))
class GPTBlock(tf.keras.layers.Layer):
def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):
super().__init__()
self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')
self.adapter_up = tf.keras.layers.Dense(d_model)
self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)
self.ffn = SwiGLU(d_model, d_ff)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
self.rope = RotaryPositionalEmbedding(d_model // num_heads)
def call(self, x, training=False):
x_norm = self.ln1(x)
b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]
h = self.mha.num_heads
d = x_norm.shape[-1] // h
qkv = tf.reshape(x_norm, [b, s, h, d])
qkv = tf.transpose(qkv, [0, 2, 1, 3])
q = self.rope(qkv)
k = self.rope(qkv)
q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])
k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])
attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)
attn_out = self.dropout1(attn_out, training=training)
adapter_out = self.adapter_up(self.adapter_down(attn_out))
attn_out = attn_out + adapter_out
x = x + attn_out
ffn_out = self.ffn(self.ln2(x))
x = x + self.dropout2(ffn_out, training=training)
return x
class InteractGPT(tf.keras.Model):
def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):
super().__init__()
self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)
self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)
def call(self, x, training=False):
x = self.token_embedding(x)
for block in self.blocks:
x = block(x, training=training)
x = self.ln_f(x)
logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)
return logits
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)
dummy_input = tf.zeros((1, max_len), dtype=tf.int32) # 배치1, 시퀀스길이 max_len
_ = model(dummy_input) # 모델이 빌드됨
model.load_weights("Flexi.weights.h5")
print("모델 가중치 로드 완료!")
def is_greedy_response_acceptable(text):
text = text.strip()
# 너무 짧은 문장 거르기
if len(text) < 5:
return False
# 단어 수 너무 적은 것도 거름
if len(text.split()) < 3:
return False
# ㅋㅋㅋ 같은 자모 연속만 있으면 거름 (단, 'ㅋㅋ' 포함되면 허용)
if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', text) and 'ㅋㅋ' not in text:
return False
# 문장 끝이 어색한 경우 (다/요/죠 등 일반적 형태로 끝나지 않으면 거름)
if not re.search(r'(다|요|죠|다\.|요\.|죠\.|다!|요!|죠!|\!|\?|\.)$', text):
return False
return True
def generate_text_sample(model, prompt, max_len=100, max_gen=98,
temperature=0.7, top_k=40, top_p=0.9, min_len=12):
model_input = text_to_ids(f"<start> {prompt} <sep>")
model_input = model_input[:max_len]
generated = list(model_input)
for _ in range(max_gen):
pad_len = max(0, max_len - len(generated))
input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
input_tensor = tf.convert_to_tensor([input_padded])
logits = model(input_tensor, training=False)
next_logits = logits[0, len(generated) - 1].numpy()
# Temperature 적용
next_logits = next_logits / temperature
probs = np.exp(next_logits - np.max(next_logits))
probs = probs / probs.sum()
# Top-K 필터링
if top_k is not None and top_k > 0:
indices_to_remove = probs < np.sort(probs)[-top_k]
probs[indices_to_remove] = 0
probs /= probs.sum()
# Top-P (누적 확률) 필터링
if top_p is not None and 0 < top_p < 1:
sorted_indices = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_indices]
cumulative_probs = np.cumsum(sorted_probs)
# 누적 확률이 top_p 초과하는 토큰들은 제거
cutoff_index = np.searchsorted(cumulative_probs, top_p, side='right')
probs_to_keep = sorted_indices[:cutoff_index+1]
mask = np.ones_like(probs, dtype=bool)
mask[probs_to_keep] = False
probs[mask] = 0
probs /= probs.sum()
# 샘플링
next_token = np.random.choice(len(probs), p=probs)
generated.append(int(next_token))
# 디코딩 및 후처리
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
decoded = decoded.strip()
if len(generated) >= min_len and (next_token == end_id or decoded.endswith(('요', '다', '.', '!', '?'))):
if is_greedy_response_acceptable(decoded):
return decoded
else:
continue
decoded = sp.decode(generated)
for t in ["<start>", "<sep>", "<end>"]:
decoded = decoded.replace(t, "")
return decoded.strip()
def mismatch_tone(input_text, output_text):
if "ㅋㅋ" in input_text and not re.search(r'ㅋㅋ|ㅎ|재밌|놀|만나|맛집|여행', output_text):
return True
return False
# 유효한 응답인지 검사
def is_valid_response(response):
if len(response.strip()) < 2:
return False
if re.search(r'[ㄱ-ㅎㅏ-ㅣ]{3,}', response):
return False
if len(response.split()) < 2:
return False
if response.count(' ') < 2:
return False
if any(tok in response.lower() for tok in ['hello', 'this', 'ㅋㅋ']):
return False
return True
# 위키 요약 관련
def extract_main_query(text):
sentences = re.split(r'[.?!]\s*', text)
sentences = [s.strip() for s in sentences if s.strip()]
if not sentences:
return text
last = sentences[-1]
last = re.sub(r'[^가-힣a-zA-Z0-9 ]', '', last)
particles = ['이', '가', '은', '는', '을', '를', '의', '에서', '에게', '한테', '보다']
for p in particles:
last = re.sub(rf'\b(\w+){p}\b', r'\1', last)
return last.strip()
def get_wikipedia_summary(query):
cleaned_query = extract_main_query(query)
url = f"https://ko.wikipedia.org/api/rest_v1/page/summary/{cleaned_query}"
res = requests.get(url)
if res.status_code == 200:
return res.json().get("extract", "요약 정보를 찾을 수 없습니다.")
else:
return "위키백과에서 정보를 가져올 수 없습니다."
def textrank_summarize(text, top_n=3):
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
sentences = [s.strip() for s in sentences if len(s.strip()) > 10]
if len(sentences) <= top_n:
return text
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(sentences)
sim_matrix = cosine_similarity(tfidf_matrix)
np.fill_diagonal(sim_matrix, 0)
def pagerank(matrix, damping=0.85, max_iter=100, tol=1e-4):
N = matrix.shape[0]
ranks = np.ones(N) / N
row_sums = np.sum(matrix, axis=1)
row_sums[row_sums == 0] = 1
for _ in range(max_iter):
prev_ranks = ranks.copy()
for i in range(N):
incoming = matrix[:, i]
ranks[i] = (1 - damping) / N + damping * np.sum(incoming * prev_ranks / row_sums)
if np.linalg.norm(ranks - prev_ranks) < tol:
break
return ranks
scores = pagerank(sim_matrix)
ranked_idx = np.argsort(scores)[::-1]
selected_idx = sorted(ranked_idx[:top_n])
summary = ' '.join([sentences[i] for i in selected_idx])
return summary
def summarize_from_wikipedia(query, top_n=3):
raw_summary = get_wikipedia_summary(query)
first_summary = textrank_summarize(raw_summary, top_n=top_n)
second_summary = textrank_summarize(first_summary, top_n=top_n)
return second_summary
def simple_intent_classifier(text):
text = text.lower()
greet_keywords = ["안녕", "반가워", "이름", "누구", "소개", "어디서 왔", "정체", "몇 살", "너 뭐야"]
info_keywords = ["설명", "정보", "무엇", "뭐야", "어디", "누구", "왜", "어떻게", "종류", "개념"]
math_keywords = ["더하기", "빼기", "곱하기", "나누기", "루트", "제곱", "+", "-", "*", "/", "=", "^", "√", "계산", "몇이야", "얼마야"]
if any(kw in text for kw in greet_keywords):
return "인사"
elif any(kw in text for kw in info_keywords):
return "정보질문"
elif any(kw in text for kw in math_keywords):
return "수학질문"
else:
return "일상대화"
def parse_math_question(text):
text = text.replace("곱하기", "*").replace("더하기", "+").replace("빼기", "-").replace("나누기", "/").replace("제곱", "*2")
text = re.sub(r'루트\s(\d+)', r'math.sqrt(\1)', text)
try:
result = eval(text)
return f"정답은 {result}입니다."
except:
return "계산할 수 없는 수식이에요. 다시 한번 확인해 주세요!"
# 최종 응답 함수
def respond(input_text):
intent = simple_intent_classifier(input_text)
if "이름" in input_text:
return "제 이름은 InteractGPT입니다."
if "누구" in input_text:
return "저는 InteractGPT라고 해요."
if intent == "수학질문":
return parse_math_question(input_text)
if intent == "인사":
return "반가워요! 무엇을 도와드릴까요?"
if intent == "정보질문":
keyword = re.sub(r"(에 대해|에 대한|에 대해서)?\s*(설명해줘|알려줘|뭐야|개념|정의|정보)?", "", input_text).strip()
if not keyword:
return "어떤 주제에 대해 궁금한가요?"
summary = summarize_from_wikipedia(keyword)
return f"{summary}\n다른 궁금한 점 있으신가요?"
# 일상 대화: 샘플링 + fallback
response = generate_text_sample(model, input_text)
if not is_valid_response(response) or mismatch_tone(input_text, response):
response = generate_text_sample(model, input_text)
return response
@app.get("/generate", response_class=PlainTextResponse)
async def generate(request: Request):
prompt = request.query_params.get("prompt", "안녕하세요")
response_text = respond(prompt)
return response_text |