File size: 8,075 Bytes
35d657e
 
 
92805cb
35d657e
 
 
5848124
9cad8b1
d348825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cad8b1
 
 
 
 
 
 
 
e57c7af
9cad8b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35d657e
9ab8176
11d37d9
 
feab31b
 
 
35d657e
feab31b
 
 
 
 
 
 
 
9ab8176
feab31b
 
 
 
9ab8176
feab31b
 
 
 
 
 
 
 
 
9ab8176
 
 
 
 
 
 
 
 
feab31b
 
 
9ab8176
 
 
feab31b
9ab8176
feab31b
 
 
 
 
 
 
 
 
 
9ab8176
35d657e
9ab8176
35d657e
 
 
 
 
 
 
9cad8b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers  
import asyncio
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import sentencepiece as spm
app = FastAPI()    

from fastapi.middleware.cors import CORSMiddleware

origins = [
    "https://insect5386.github.io",
    "https://insect5386.github.io/insect5386"
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)
      
sp = spm.SentencePieceProcessor()      
sp.load("kolig_unigram.model")      
      
pad_id = sp.piece_to_id("<pad>")      
if pad_id == -1: pad_id = 0      
start_id = sp.piece_to_id("<start>")      
if start_id == -1: start_id = 1      
end_id = sp.piece_to_id("<end>")      
if end_id == -1: end_id = 2      
unk_id = sp.piece_to_id("<unk>")      
if unk_id == -1: unk_id = 3      
      
vocab_size = sp.get_piece_size()      
max_len = 100      
      
def text_to_ids(text):      
    return sp.encode(text, out_type=int)      
      
def ids_to_text(ids):      
    return sp.decode(ids)      
    
class RotaryPositionalEmbedding(layers.Layer):      
    def __init__(self, dim):      
        super().__init__()      
        inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))      
        self.inv_freq = tf.constant(inv_freq, dtype=tf.float32)      
      
    def call(self, x):      
        batch, heads, seq_len, depth = tf.unstack(tf.shape(x))      
        t = tf.range(seq_len, dtype=tf.float32)      
        freqs = tf.einsum('i,j->ij', t, self.inv_freq)      
        emb_sin = tf.sin(freqs)      
        emb_cos = tf.cos(freqs)      
        emb_cos = tf.reshape(emb_cos, [1, 1, seq_len, -1])      
        emb_sin = tf.reshape(emb_sin, [1, 1, seq_len, -1])      
        x1 = x[..., ::2]      
        x2 = x[..., 1::2]      
        x_rotated = tf.stack([      
            x1 * emb_cos - x2 * emb_sin,      
            x1 * emb_sin + x2 * emb_cos      
        ], axis=-1)      
        x_rotated = tf.reshape(x_rotated, tf.shape(x))      
        return x_rotated    
    
class SwiGLU(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff):    
        super().__init__()    
        self.proj = tf.keras.layers.Dense(d_ff * 2)    
        self.out = tf.keras.layers.Dense(d_model)    
    
    def call(self, x):    
        x_proj = self.proj(x)    
        x_val, x_gate = tf.split(x_proj, 2, axis=-1)    
        return self.out(x_val * tf.nn.silu(x_gate))    
            
class GPTBlock(tf.keras.layers.Layer):    
    def __init__(self, d_model, d_ff, num_heads=8, dropout_rate=0.1, adapter_dim=64):      
        super().__init__()      
        self.ln1 = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
        self.mha = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model // num_heads)      
        self.dropout1 = tf.keras.layers.Dropout(dropout_rate)     
        self.adapter_down = tf.keras.layers.Dense(adapter_dim, activation='gelu')     
        self.adapter_up = tf.keras.layers.Dense(d_model)      
      
        self.ln2 = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
        self.ffn = SwiGLU(d_model, d_ff)      
        self.dropout2 = tf.keras.layers.Dropout(dropout_rate)     
        self.rope = RotaryPositionalEmbedding(d_model // num_heads)      
      
    def call(self, x, training=False):      
        x_norm = self.ln1(x)      
        b, s, _ = tf.shape(x_norm)[0], tf.shape(x_norm)[1], tf.shape(x_norm)[2]      
        h = self.mha.num_heads      
        d = x_norm.shape[-1] // h      
      
        qkv = tf.reshape(x_norm, [b, s, h, d])      
        qkv = tf.transpose(qkv, [0, 2, 1, 3])      
        q = self.rope(qkv)      
        k = self.rope(qkv)      
        q = tf.reshape(tf.transpose(q, [0, 2, 1, 3]), [b, s, h * d])      
        k = tf.reshape(tf.transpose(k, [0, 2, 1, 3]), [b, s, h * d])      
      
        attn_out = self.mha(query=q, value=x_norm, key=k, use_causal_mask=True, training=training)      
        attn_out = self.dropout1(attn_out, training=training)      
    
        adapter_out = self.adapter_up(self.adapter_down(attn_out))    
        attn_out = attn_out + adapter_out      
      
        x = x + attn_out      
        ffn_out = self.ffn(self.ln2(x))      
        x = x + self.dropout2(ffn_out, training=training)      
        return x    
    
class InteractGPT(tf.keras.Model):      
    def __init__(self, vocab_size, seq_len, d_model, d_ff, n_layers, num_heads=8, dropout_rate=0.1):      
        super().__init__()      
        self.token_embedding = tf.keras.layers.Embedding(vocab_size, d_model)      
        self.blocks = [GPTBlock(d_model, d_ff, num_heads, dropout_rate) for _ in range(n_layers)]      
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=1e-5)      
      
    def call(self, x, training=False):      
        x = self.token_embedding(x)      
        for block in self.blocks:      
            x = block(x, training=training)      
        x = self.ln_f(x)      
        logits = tf.matmul(x, self.token_embedding.embeddings, transpose_b=True)      
        return logits      
    
model = InteractGPT(vocab_size=vocab_size, seq_len=max_len, d_model=256, d_ff=1024, n_layers=6)        
      
dummy_input = tf.zeros((1, max_len), dtype=tf.int32)  # 배치1, 시퀀스길이 max_len      
_ = model(dummy_input)  # 모델이 빌드됨      
model.load_weights("InteractGPT.weights.h5")      
print("모델 가중치 로드 완료!")      

def generate_text_top_kp(model, prompt, max_len=100, max_gen=98,
                         temperature=0.7, min_len=20,
                         repetition_penalty=1.1, top_k=50, top_p=0.9):
    model_input = text_to_ids(f"<start> {prompt} <sep>")
    model_input = model_input[:max_len]
    generated = list(model_input)

    for step in range(max_gen):
        pad_len = max(0, max_len - len(generated))
        input_padded = np.pad(generated, (0, pad_len), constant_values=pad_id)
        input_tensor = tf.convert_to_tensor([input_padded])

        logits = model(input_tensor, training=False)
        next_logits = logits[0, len(generated) - 1].numpy()

        # 반복 억제
        for t in set(generated):
            count = generated.count(t)
            next_logits[t] /= (repetition_penalty ** count)

        # 조기 종료 방지
        if len(generated) < min_len:
            next_logits[end_id] -= 5.0
        next_logits[pad_id] -= 10.0

        # 온도 적용
        next_logits = next_logits / temperature
        probs = np.exp(next_logits - np.max(next_logits))
        probs /= probs.sum()

        # Top-K 적용
        top_k = min(top_k, len(probs))
        top_k_idx = np.argsort(-probs)[:top_k]
        top_k_probs = probs[top_k_idx]
        top_k_probs /= top_k_probs.sum()

        # Top-P 필터링
        sorted_idx = np.argsort(-top_k_probs)
        sorted_probs = top_k_probs[sorted_idx]
        cum_probs = np.cumsum(sorted_probs)
        cutoff = np.searchsorted(cum_probs, top_p) + 1

        final_idx = top_k_idx[sorted_idx[:cutoff]]
        final_probs = sorted_probs[:cutoff]
        final_probs /= final_probs.sum()

        sampled = np.random.choice(final_idx, p=final_probs)
        generated.append(int(sampled))

        decoded = sp.decode(generated)
        for t in ["<start>", "<sep>", "<end>"]:
            decoded = decoded.replace(t, "")
        decoded = decoded.strip()

        if len(generated) >= min_len and (sampled == end_id or decoded.endswith(('.', '!', '?'))):
            yield decoded
            break

async def async_generator_wrapper(prompt: str):
    gen = generate_text_top_kp(model, prompt)
    for text_piece in gen:
        yield text_piece
        await asyncio.sleep(0.1)

@app.get("/generate")
async def generate(request: Request):
    prompt = request.query_params.get("prompt", "안녕하세요")
    return StreamingResponse(async_generator_wrapper(prompt), media_type="text/plain")