File size: 9,968 Bytes
5022bc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import argparse
HPARAMS_REGISTRY = {}
class Hparams:
def update(self, dict):
for k, v in dict.items():
setattr(self, k, v)
brset = Hparams()
brset.lr = 1e-3
brset.bs = 16
brset.wd = 0.01
brset.z_dim = 16
brset.input_res = 384 #192
brset.pad = 9
brset.hflip = 0.5
brset.input_channels = 3
# the first number is never used, it is just a placeholder to know the expected dimension of the output
# b is the number of convolutional blocks, so for example 32b3d2 means 3 convolutional blocks
# d is used to create a downsampling layer (represented as projection layer, and a 2D average pooling layer), so 32b3d2 means that we will add a 2D average pooling layer block with a stride and and kernel size of 2, at the end of the 3 convolutional blocks
# The widths are the number of channels of each convolutional block
#brset.enc_arch = "384b1d4,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2" # Also for 384 but requires more memory
#brset.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,384b2" # Also for 384 but requires more memory
brset.enc_arch = "384b1d4,96b3d4,24b11d2,12b7d2,6b3d6,1b2" # for 384
brset.dec_arch = "1b2,6b4,12b8,24b12,96b4,384b2" # for 384
brset.widths = [32, 64, 128, 160, 192, 512] # for 384
#brset.enc_arch = "192b1d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2" # for 192
#brset.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2" # for 192
#brset.widths = [32, 64, 96, 128, 160, 192, 512] # for 192
brset.bias_max_res = 64 # Used for the max resolution of the bias parameter
brset.bottleneck = 4 # Used for the number of channels of the bottleneck layer in the block = width/bottleneck
brset.parents_x = ['patient_age', 'patient_sex', 'DR_ICDR']
brset.context_norm = "[-1,1]"
brset.context_dim = 7 # Number of context variables. In our case it is 7 because we have age (1 - Continuous), sex (1 - Binary) and DR_ICDR (5 one-hot encoded)
brset.n_classes = 5
brset.concat_pa = True
HPARAMS_REGISTRY["brset"] = brset
morphomnist = Hparams()
morphomnist.lr = 1e-3
morphomnist.bs = 32
morphomnist.wd = 0.01
morphomnist.z_dim = 16
morphomnist.input_res = 32
morphomnist.pad = 4
morphomnist.enc_arch = "32b3d2,16b3d2,8b3d2,4b3d4,1b4"
morphomnist.dec_arch = "1b4,4b4,8b4,16b4,32b4"
morphomnist.widths = [16, 32, 64, 128, 256]
morphomnist.parents_x = ["thickness", "intensity", "digit"]
morphomnist.concat_pa = True
morphomnist.context_norm = "[-1,1]"
morphomnist.context_dim = 12
HPARAMS_REGISTRY["morphomnist"] = morphomnist
cmnist = Hparams()
cmnist.lr = 1e-3
cmnist.bs = 32
cmnist.wd = 0.01
cmnist.z_dim = 16
cmnist.input_res = 32
cmnist.input_channels = 3
cmnist.pad = 4
cmnist.enc_arch = "32b3d2,16b3d2,8b3d2,4b3d4,1b4"
cmnist.dec_arch = "1b4,4b4,8b4,16b4,32b4"
cmnist.widths = [16, 32, 64, 128, 256]
cmnist.parents_x = ["digit", "colour"]
cmnist.context_dim = 20
HPARAMS_REGISTRY["cmnist"] = cmnist
ukbb64 = Hparams()
ukbb64.lr = 1e-3
ukbb64.bs = 32
ukbb64.wd = 0.1
ukbb64.z_dim = 16
ukbb64.input_res = 64
ukbb64.pad = 3
ukbb64.enc_arch = "64b3d2,32b31d2,16b15d2,8b7d2,4b3d4,1b2"
ukbb64.dec_arch = "1b2,4b4,8b8,16b16,32b32,64b4"
ukbb64.widths = [32, 64, 128, 256, 512, 1024]
HPARAMS_REGISTRY["ukbb64"] = ukbb64
ukbb192 = Hparams()
ukbb192.update(ukbb64.__dict__)
ukbb192.input_res = 384
ukbb192.pad = 9
ukbb192.enc_arch = "384b2d2,192b2d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2"
ukbb192.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2,384b2"
ukbb192.widths = [32, 64, 96, 128, 160, 192, 512, 1024]
HPARAMS_REGISTRY["ukbb192"] = ukbb192
mimic192 = Hparams()
mimic192.lr = 1e-3
mimic192.bs = 16
mimic192.wd = 0.1
mimic192.z_dim = 16
mimic192.input_res = 192
mimic192.pad = 9
mimic192.enc_arch = "192b1d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2"
mimic192.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2"
mimic192.widths = [32, 64, 96, 128, 160, 192, 512]
HPARAMS_REGISTRY["mimic192"] = mimic192
mimic384 = Hparams()
mimic384.lr = 1e-3
mimic384.bs = 16
mimic384.wd = 0.1
mimic384.z_dim = 16
mimic384.input_res = 384
mimic384.pad = 9
mimic384.enc_arch = "384b1d2,192b1d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2"
mimic384.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2,384b2"
mimic384.widths = [32, 64, 96, 128, 160, 192, 512,1024]
HPARAMS_REGISTRY["mimic384"] = mimic384
def setup_hparams(parser: argparse.ArgumentParser) -> Hparams:
hparams = Hparams()
args = parser.parse_known_args()[0]
valid_args = set(args.__dict__.keys())
hparams_dict = HPARAMS_REGISTRY[args.hps].__dict__
for k in hparams_dict.keys():
if k not in valid_args:
raise ValueError(f"{k} not in default args")
parser.set_defaults(**hparams_dict)
hparams.update(parser.parse_known_args()[0].__dict__)
return hparams
def add_arguments(parser: argparse.ArgumentParser):
parser.add_argument("--exp_name", help="Experiment name.", type=str, default="")
parser.add_argument(
"--data_dir", help="Data directory to load form.", type=str, default=""
)
parser.add_argument("--hps", help="hyperparam set.", type=str, default="ukbb64")
parser.add_argument(
"--resume", help="Path to load checkpoint.", type=str, default=""
)
parser.add_argument("--seed", help="Set random seed.", type=int, default=7)
parser.add_argument(
"--deterministic",
help="Toggle cudNN determinism.",
action="store_true",
default=False,
)
# training
parser.add_argument("--epochs", help="Training epochs.", type=int, default=5000)
parser.add_argument("--bs", help="Batch size.", type=int, default=32)
parser.add_argument("--lr", help="Learning rate.", type=float, default=1e-3)
parser.add_argument(
"--lr_warmup_steps", help="lr warmup steps.", type=int, default=100
)
parser.add_argument("--wd", help="Weight decay penalty.", type=float, default=0.01)
parser.add_argument(
"--betas",
help="Adam beta parameters.",
nargs="+",
type=float,
default=[0.9, 0.9],
)
parser.add_argument(
"--ema_rate", help="Exp. moving avg. model rate.", type=float, default=0.999
)
parser.add_argument(
"--input_res", help="Input image crop resolution.", type=int, default=64
)
parser.add_argument(
"--input_channels", help="Input image num channels.", type=int, default=1
)
parser.add_argument("--pad", help="Input padding.", type=int, default=3)
parser.add_argument(
"--hflip", help="Horizontal flip prob.", type=float, default=0.5
)
parser.add_argument(
"--grad_clip", help="Gradient clipping value.", type=float, default=350
)
parser.add_argument(
"--grad_skip", help="Skip update grad norm threshold.", type=float, default=500
)
parser.add_argument(
"--accu_steps", help="Gradient accumulation steps.", type=int, default=1
)
parser.add_argument(
"--beta", help="Max KL beta penalty weight.", type=float, default=1.0
)
parser.add_argument(
"--beta_warmup_steps", help="KL beta penalty warmup steps.", type=int, default=0
)
parser.add_argument(
"--kl_free_bits", help="KL min free bits constraint.", type=float, default=0.0
)
parser.add_argument(
"--viz_freq", help="Steps per visualisation.", type=int, default=10000
)
parser.add_argument(
"--eval_freq", help="Train epochs per validation.", type=int, default=5
)
parser.add_argument(
"--n_classes", help="Number of classes for DR ICDR.", type=int, default=10
)
# model
parser.add_argument(
"--vae",
help="VAE model: simple/hierarchical.",
type=str,
default="hierarchical",
)
parser.add_argument(
"--enc_arch",
help="Encoder architecture config.",
type=str,
default="64b1d2,32b1d2,16b1d2,8b1d8,1b2",
)
parser.add_argument(
"--dec_arch",
help="Decoder architecture config.",
type=str,
default="1b2,8b2,16b2,32b2,64b2",
)
parser.add_argument(
"--cond_prior",
help="Use a conditional prior.",
action="store_true",
default=False,
)
parser.add_argument(
"--widths",
help="Number of channels.",
nargs="+",
type=int,
default=[16, 32, 48, 64, 128],
)
parser.add_argument(
"--bottleneck", help="Bottleneck width factor.", type=int, default=4
)
parser.add_argument(
"--z_dim", help="Numver of latent channel dims.", type=int, default=16
)
parser.add_argument(
"--z_max_res",
help="Max resolution of stochastic z layers.",
type=int,
default=192,
)
parser.add_argument(
"--bias_max_res",
help="Learned bias param max resolution.",
type=int,
default=64,
)
parser.add_argument(
"--x_like",
help="x likelihood: {fixed/shared/diag}_{gauss/dgauss}.",
type=str,
default="diag_dgauss",
)
parser.add_argument(
"--std_init",
help="Initial std for x scale. 0 is random.",
type=float,
default=0.0,
)
parser.add_argument(
"--parents_x",
help="Parents of x to condition on.",
nargs="+",
default=["mri_seq", "brain_volume", "ventricle_volume", "sex"],
)
parser.add_argument(
"--concat_pa",
help="Whether to concatenate parents_x.",
action="store_true",
default=False,
)
parser.add_argument(
"--context_dim",
help="Num context variables conditioned on.",
type=int,
default=4,
)
parser.add_argument(
"--context_norm",
help='Conditioning normalisation {"[-1,1]"/"[0,1]"/log_standard}.',
type=str,
default="log_standard",
)
parser.add_argument(
"--q_correction",
help="Use posterior correction.",
action="store_true",
default=False,
)
return parser
|