Upload hps.py
Browse files
hps.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
HPARAMS_REGISTRY = {}
|
4 |
+
|
5 |
+
|
6 |
+
class Hparams:
|
7 |
+
def update(self, dict):
|
8 |
+
for k, v in dict.items():
|
9 |
+
setattr(self, k, v)
|
10 |
+
|
11 |
+
brset = Hparams()
|
12 |
+
brset.lr = 1e-3
|
13 |
+
brset.bs = 16
|
14 |
+
brset.wd = 0.01
|
15 |
+
brset.z_dim = 16
|
16 |
+
brset.input_res = 384 #192
|
17 |
+
brset.pad = 9
|
18 |
+
brset.hflip = 0.5
|
19 |
+
|
20 |
+
brset.input_channels = 3
|
21 |
+
# the first number is never used, it is just a placeholder to know the expected dimension of the output
|
22 |
+
# b is the number of convolutional blocks, so for example 32b3d2 means 3 convolutional blocks
|
23 |
+
# d is used to create a downsampling layer (represented as projection layer, and a 2D average pooling layer), so 32b3d2 means that we will add a 2D average pooling layer block with a stride and and kernel size of 2, at the end of the 3 convolutional blocks
|
24 |
+
# The widths are the number of channels of each convolutional block
|
25 |
+
#brset.enc_arch = "384b1d4,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2" # Also for 384 but requires more memory
|
26 |
+
#brset.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,384b2" # Also for 384 but requires more memory
|
27 |
+
brset.enc_arch = "384b1d4,96b3d4,24b11d2,12b7d2,6b3d6,1b2" # for 384
|
28 |
+
brset.dec_arch = "1b2,6b4,12b8,24b12,96b4,384b2" # for 384
|
29 |
+
brset.widths = [32, 64, 128, 160, 192, 512] # for 384
|
30 |
+
#brset.enc_arch = "192b1d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2" # for 192
|
31 |
+
#brset.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2" # for 192
|
32 |
+
#brset.widths = [32, 64, 96, 128, 160, 192, 512] # for 192
|
33 |
+
brset.bias_max_res = 64 # Used for the max resolution of the bias parameter
|
34 |
+
brset.bottleneck = 4 # Used for the number of channels of the bottleneck layer in the block = width/bottleneck
|
35 |
+
brset.parents_x = ['patient_age', 'patient_sex', 'DR_ICDR']
|
36 |
+
brset.context_norm = "[-1,1]"
|
37 |
+
brset.context_dim = 7 # Number of context variables. In our case it is 7 because we have age (1 - Continuous), sex (1 - Binary) and DR_ICDR (5 one-hot encoded)
|
38 |
+
brset.n_classes = 5
|
39 |
+
brset.concat_pa = True
|
40 |
+
HPARAMS_REGISTRY["brset"] = brset
|
41 |
+
|
42 |
+
|
43 |
+
morphomnist = Hparams()
|
44 |
+
morphomnist.lr = 1e-3
|
45 |
+
morphomnist.bs = 32
|
46 |
+
morphomnist.wd = 0.01
|
47 |
+
morphomnist.z_dim = 16
|
48 |
+
morphomnist.input_res = 32
|
49 |
+
morphomnist.pad = 4
|
50 |
+
morphomnist.enc_arch = "32b3d2,16b3d2,8b3d2,4b3d4,1b4"
|
51 |
+
morphomnist.dec_arch = "1b4,4b4,8b4,16b4,32b4"
|
52 |
+
morphomnist.widths = [16, 32, 64, 128, 256]
|
53 |
+
morphomnist.parents_x = ["thickness", "intensity", "digit"]
|
54 |
+
morphomnist.concat_pa = True
|
55 |
+
morphomnist.context_norm = "[-1,1]"
|
56 |
+
morphomnist.context_dim = 12
|
57 |
+
HPARAMS_REGISTRY["morphomnist"] = morphomnist
|
58 |
+
|
59 |
+
|
60 |
+
cmnist = Hparams()
|
61 |
+
cmnist.lr = 1e-3
|
62 |
+
cmnist.bs = 32
|
63 |
+
cmnist.wd = 0.01
|
64 |
+
cmnist.z_dim = 16
|
65 |
+
cmnist.input_res = 32
|
66 |
+
cmnist.input_channels = 3
|
67 |
+
cmnist.pad = 4
|
68 |
+
cmnist.enc_arch = "32b3d2,16b3d2,8b3d2,4b3d4,1b4"
|
69 |
+
cmnist.dec_arch = "1b4,4b4,8b4,16b4,32b4"
|
70 |
+
cmnist.widths = [16, 32, 64, 128, 256]
|
71 |
+
cmnist.parents_x = ["digit", "colour"]
|
72 |
+
cmnist.context_dim = 20
|
73 |
+
HPARAMS_REGISTRY["cmnist"] = cmnist
|
74 |
+
|
75 |
+
|
76 |
+
ukbb64 = Hparams()
|
77 |
+
ukbb64.lr = 1e-3
|
78 |
+
ukbb64.bs = 32
|
79 |
+
ukbb64.wd = 0.1
|
80 |
+
ukbb64.z_dim = 16
|
81 |
+
ukbb64.input_res = 64
|
82 |
+
ukbb64.pad = 3
|
83 |
+
ukbb64.enc_arch = "64b3d2,32b31d2,16b15d2,8b7d2,4b3d4,1b2"
|
84 |
+
ukbb64.dec_arch = "1b2,4b4,8b8,16b16,32b32,64b4"
|
85 |
+
ukbb64.widths = [32, 64, 128, 256, 512, 1024]
|
86 |
+
HPARAMS_REGISTRY["ukbb64"] = ukbb64
|
87 |
+
|
88 |
+
|
89 |
+
ukbb192 = Hparams()
|
90 |
+
ukbb192.update(ukbb64.__dict__)
|
91 |
+
ukbb192.input_res = 384
|
92 |
+
ukbb192.pad = 9
|
93 |
+
ukbb192.enc_arch = "384b2d2,192b2d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2"
|
94 |
+
ukbb192.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2,384b2"
|
95 |
+
ukbb192.widths = [32, 64, 96, 128, 160, 192, 512, 1024]
|
96 |
+
HPARAMS_REGISTRY["ukbb192"] = ukbb192
|
97 |
+
|
98 |
+
|
99 |
+
mimic192 = Hparams()
|
100 |
+
mimic192.lr = 1e-3
|
101 |
+
mimic192.bs = 16
|
102 |
+
mimic192.wd = 0.1
|
103 |
+
mimic192.z_dim = 16
|
104 |
+
mimic192.input_res = 192
|
105 |
+
mimic192.pad = 9
|
106 |
+
mimic192.enc_arch = "192b1d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2"
|
107 |
+
mimic192.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2"
|
108 |
+
mimic192.widths = [32, 64, 96, 128, 160, 192, 512]
|
109 |
+
HPARAMS_REGISTRY["mimic192"] = mimic192
|
110 |
+
|
111 |
+
mimic384 = Hparams()
|
112 |
+
mimic384.lr = 1e-3
|
113 |
+
mimic384.bs = 16
|
114 |
+
mimic384.wd = 0.1
|
115 |
+
mimic384.z_dim = 16
|
116 |
+
mimic384.input_res = 384
|
117 |
+
mimic384.pad = 9
|
118 |
+
mimic384.enc_arch = "384b1d2,192b1d2,96b3d2,48b7d2,24b11d2,12b7d2,6b3d6,1b2"
|
119 |
+
mimic384.dec_arch = "1b2,6b4,12b8,24b12,48b8,96b4,192b2,384b2"
|
120 |
+
mimic384.widths = [32, 64, 96, 128, 160, 192, 512,1024]
|
121 |
+
HPARAMS_REGISTRY["mimic384"] = mimic384
|
122 |
+
|
123 |
+
def setup_hparams(parser: argparse.ArgumentParser) -> Hparams:
|
124 |
+
hparams = Hparams()
|
125 |
+
args = parser.parse_known_args()[0]
|
126 |
+
valid_args = set(args.__dict__.keys())
|
127 |
+
hparams_dict = HPARAMS_REGISTRY[args.hps].__dict__
|
128 |
+
for k in hparams_dict.keys():
|
129 |
+
if k not in valid_args:
|
130 |
+
raise ValueError(f"{k} not in default args")
|
131 |
+
parser.set_defaults(**hparams_dict)
|
132 |
+
hparams.update(parser.parse_known_args()[0].__dict__)
|
133 |
+
return hparams
|
134 |
+
|
135 |
+
|
136 |
+
def add_arguments(parser: argparse.ArgumentParser):
|
137 |
+
parser.add_argument("--exp_name", help="Experiment name.", type=str, default="")
|
138 |
+
parser.add_argument(
|
139 |
+
"--data_dir", help="Data directory to load form.", type=str, default=""
|
140 |
+
)
|
141 |
+
parser.add_argument("--hps", help="hyperparam set.", type=str, default="ukbb64")
|
142 |
+
parser.add_argument(
|
143 |
+
"--resume", help="Path to load checkpoint.", type=str, default=""
|
144 |
+
)
|
145 |
+
parser.add_argument("--seed", help="Set random seed.", type=int, default=7)
|
146 |
+
parser.add_argument(
|
147 |
+
"--deterministic",
|
148 |
+
help="Toggle cudNN determinism.",
|
149 |
+
action="store_true",
|
150 |
+
default=False,
|
151 |
+
)
|
152 |
+
# training
|
153 |
+
parser.add_argument("--epochs", help="Training epochs.", type=int, default=5000)
|
154 |
+
parser.add_argument("--bs", help="Batch size.", type=int, default=32)
|
155 |
+
parser.add_argument("--lr", help="Learning rate.", type=float, default=1e-3)
|
156 |
+
parser.add_argument(
|
157 |
+
"--lr_warmup_steps", help="lr warmup steps.", type=int, default=100
|
158 |
+
)
|
159 |
+
parser.add_argument("--wd", help="Weight decay penalty.", type=float, default=0.01)
|
160 |
+
parser.add_argument(
|
161 |
+
"--betas",
|
162 |
+
help="Adam beta parameters.",
|
163 |
+
nargs="+",
|
164 |
+
type=float,
|
165 |
+
default=[0.9, 0.9],
|
166 |
+
)
|
167 |
+
parser.add_argument(
|
168 |
+
"--ema_rate", help="Exp. moving avg. model rate.", type=float, default=0.999
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--input_res", help="Input image crop resolution.", type=int, default=64
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--input_channels", help="Input image num channels.", type=int, default=1
|
175 |
+
)
|
176 |
+
parser.add_argument("--pad", help="Input padding.", type=int, default=3)
|
177 |
+
parser.add_argument(
|
178 |
+
"--hflip", help="Horizontal flip prob.", type=float, default=0.5
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--grad_clip", help="Gradient clipping value.", type=float, default=350
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--grad_skip", help="Skip update grad norm threshold.", type=float, default=500
|
185 |
+
)
|
186 |
+
parser.add_argument(
|
187 |
+
"--accu_steps", help="Gradient accumulation steps.", type=int, default=1
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--beta", help="Max KL beta penalty weight.", type=float, default=1.0
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--beta_warmup_steps", help="KL beta penalty warmup steps.", type=int, default=0
|
194 |
+
)
|
195 |
+
parser.add_argument(
|
196 |
+
"--kl_free_bits", help="KL min free bits constraint.", type=float, default=0.0
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--viz_freq", help="Steps per visualisation.", type=int, default=10000
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--eval_freq", help="Train epochs per validation.", type=int, default=5
|
203 |
+
)
|
204 |
+
parser.add_argument(
|
205 |
+
"--n_classes", help="Number of classes for DR ICDR.", type=int, default=10
|
206 |
+
)
|
207 |
+
|
208 |
+
# model
|
209 |
+
parser.add_argument(
|
210 |
+
"--vae",
|
211 |
+
help="VAE model: simple/hierarchical.",
|
212 |
+
type=str,
|
213 |
+
default="hierarchical",
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--enc_arch",
|
217 |
+
help="Encoder architecture config.",
|
218 |
+
type=str,
|
219 |
+
default="64b1d2,32b1d2,16b1d2,8b1d8,1b2",
|
220 |
+
)
|
221 |
+
parser.add_argument(
|
222 |
+
"--dec_arch",
|
223 |
+
help="Decoder architecture config.",
|
224 |
+
type=str,
|
225 |
+
default="1b2,8b2,16b2,32b2,64b2",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--cond_prior",
|
229 |
+
help="Use a conditional prior.",
|
230 |
+
action="store_true",
|
231 |
+
default=False,
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--widths",
|
235 |
+
help="Number of channels.",
|
236 |
+
nargs="+",
|
237 |
+
type=int,
|
238 |
+
default=[16, 32, 48, 64, 128],
|
239 |
+
)
|
240 |
+
parser.add_argument(
|
241 |
+
"--bottleneck", help="Bottleneck width factor.", type=int, default=4
|
242 |
+
)
|
243 |
+
parser.add_argument(
|
244 |
+
"--z_dim", help="Numver of latent channel dims.", type=int, default=16
|
245 |
+
)
|
246 |
+
parser.add_argument(
|
247 |
+
"--z_max_res",
|
248 |
+
help="Max resolution of stochastic z layers.",
|
249 |
+
type=int,
|
250 |
+
default=192,
|
251 |
+
)
|
252 |
+
parser.add_argument(
|
253 |
+
"--bias_max_res",
|
254 |
+
help="Learned bias param max resolution.",
|
255 |
+
type=int,
|
256 |
+
default=64,
|
257 |
+
)
|
258 |
+
parser.add_argument(
|
259 |
+
"--x_like",
|
260 |
+
help="x likelihood: {fixed/shared/diag}_{gauss/dgauss}.",
|
261 |
+
type=str,
|
262 |
+
default="diag_dgauss",
|
263 |
+
)
|
264 |
+
parser.add_argument(
|
265 |
+
"--std_init",
|
266 |
+
help="Initial std for x scale. 0 is random.",
|
267 |
+
type=float,
|
268 |
+
default=0.0,
|
269 |
+
)
|
270 |
+
parser.add_argument(
|
271 |
+
"--parents_x",
|
272 |
+
help="Parents of x to condition on.",
|
273 |
+
nargs="+",
|
274 |
+
default=["mri_seq", "brain_volume", "ventricle_volume", "sex"],
|
275 |
+
)
|
276 |
+
parser.add_argument(
|
277 |
+
"--concat_pa",
|
278 |
+
help="Whether to concatenate parents_x.",
|
279 |
+
action="store_true",
|
280 |
+
default=False,
|
281 |
+
)
|
282 |
+
parser.add_argument(
|
283 |
+
"--context_dim",
|
284 |
+
help="Num context variables conditioned on.",
|
285 |
+
type=int,
|
286 |
+
default=4,
|
287 |
+
)
|
288 |
+
parser.add_argument(
|
289 |
+
"--context_norm",
|
290 |
+
help='Conditioning normalisation {"[-1,1]"/"[0,1]"/log_standard}.',
|
291 |
+
type=str,
|
292 |
+
default="log_standard",
|
293 |
+
)
|
294 |
+
parser.add_argument(
|
295 |
+
"--q_correction",
|
296 |
+
help="Use posterior correction.",
|
297 |
+
action="store_true",
|
298 |
+
default=False,
|
299 |
+
)
|
300 |
+
return parser
|