Spaces:
Running
Running
import streamlit as st | |
import cv2 | |
import numpy as np | |
import tempfile | |
import os | |
import easyocr | |
from PIL import Image, ImageDraw, ImageFont | |
from translate import Translator | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
from transformers import pipeline | |
# Set API keys | |
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
os.environ["HF_TOKEN"] = os.getenv("HF") | |
# Function to save text as an image | |
def save_text_as_image(text, file_path): | |
font = ImageFont.load_default() | |
lines = text.split('\n') | |
max_width = max([font.getbbox(line)[2] for line in lines]) + 20 | |
line_height = font.getbbox(text)[3] + 10 | |
img_height = line_height * len(lines) + 20 | |
img = Image.new("RGB", (max_width, img_height), "white") | |
draw = ImageDraw.Draw(img) | |
y = 10 | |
for line in lines: | |
draw.text((10, y), line, font=font, fill="black") | |
y += line_height | |
img.save(file_path) | |
return file_path | |
# Setup | |
st.set_page_config(page_title="MediAssist 💊", layout="wide") | |
st.markdown(""" | |
<style> | |
.stButton>button { | |
background-color: #4CAF50; | |
color: white; | |
font-weight: bold; | |
padding: 8px 20px; | |
border-radius: 8px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.title("💊 MediAssist - Prescription Analyzer") | |
st.markdown("##### Upload your prescription, get AI-based medicine insights, translate and download!") | |
uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
orig_path = temp_file.name | |
# Preprocess Image | |
image = cv2.imread(orig_path) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
_, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
kernel = np.ones((3, 3), np.uint8) | |
dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
dilated_path = orig_path.replace(".png", "_dilated.png") | |
cv2.imwrite(dilated_path, dilated) | |
# OCR | |
reader = easyocr.Reader(['en']) | |
text_list = reader.readtext(dilated, detail=0) | |
text = "\n".join(text_list) | |
# Display | |
col1, col2 = st.columns([1, 2]) | |
with col1: | |
st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
with col2: | |
st.success("✅ Image Uploaded and Preprocessed") | |
st.markdown("#### 📝 Extracted Text from Image") | |
st.code(text) | |
# Prompt | |
template = """ | |
You are a helpful medical assistant. | |
Here is a prescription text extracted from an image: | |
{prescription_text} | |
Please do the following: | |
1. Extract only the medicine names. | |
2. For each, give: | |
- Dosage and Timing | |
- Possible Side Effects | |
- Special Instructions | |
Format in bullet points, medicine-wise. | |
""" | |
prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
llm_model = HuggingFaceEndpoint( | |
repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
provider="nebius", | |
temperature=0.6, | |
max_new_tokens=300, | |
task="conversational" | |
) | |
llm = ChatHuggingFace( | |
llm=llm_model, | |
repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
provider="nebius", | |
temperature=0.6, | |
max_new_tokens=300, | |
task="conversational" | |
) | |
chain = LLMChain(llm=llm, prompt=prompt) | |
if st.button("🔍 Analyze Extracted Text"): | |
with st.spinner("Analyzing with LLM..."): | |
response = chain.run(prescription_text=text) | |
st.markdown("#### 💡 Analyzed Medicine Info") | |
st.text_area("Output", response, height=300) | |
# Save txt and image | |
txt_path = "prescription_output.txt" | |
with open(txt_path, "w") as f: | |
f.write(response) | |
img_path = "prescription_output.png" | |
save_text_as_image(response, img_path) | |
# Target language code (like 'hi' for Hindi, 'mr' for Marathi, 'gu' for Gujarati) | |
target_lang = "hi" | |
translator = Translator(to_lang=target_lang) | |
hindi_text = translator.translate(response) | |
# # Translation to Hindi | |
# translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-hi") | |
# hindi_text = translator(response, max_length=400)[0]['translation_text'] | |
st.markdown("#### 🌐 Translate to Hindi") | |
st.text_area("Translated (Hindi)", hindi_text, height=300) | |
st.markdown("#### 📥 Download Options") | |
colA, colB, colC, colD = st.columns(4) | |
with colA: | |
st.download_button("⬇️ Download TXT", data=response, file_name="medicine_analysis.txt") | |
with colB: | |
with open(img_path, "rb") as img_file: | |
st.download_button("🖼️ Download Image", data=img_file, file_name="medicine_analysis.png", mime="image/png") | |
with colC: | |
st.download_button("⬇️ Hindi TXT", data=hindi_text, file_name="hindi_medicine_analysis.txt") | |
with colD: | |
hindi_img_path = "hindi_output.png" | |
save_text_as_image(hindi_text, hindi_img_path) | |
with open(hindi_img_path, "rb") as hindi_img_file: | |
st.download_button("🖼️ Hindi Image", data=hindi_img_file, file_name="hindi_output.png", mime="image/png") | |
# Cleanup | |
os.remove(orig_path) | |
os.remove(dilated_path) | |
else: | |
st.markdown("<center><i>📸 Upload a prescription image to get started</i></center>", unsafe_allow_html=True) | |
# import streamlit as st | |
# import cv2 | |
# import numpy as np | |
# import tempfile | |
# import os | |
# import easyocr | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
# # Set Hugging Face API keys | |
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
# os.environ["HF_TOKEN"] = os.getenv("HF") | |
# # Streamlit page setup | |
# st.set_page_config( | |
# page_title="MediAssist - Prescription Analyzer", | |
# layout="wide", | |
# page_icon="💊" | |
# ) | |
# st.sidebar.title("💊 MediAssist") | |
# st.sidebar.markdown("Analyze prescriptions with ease using AI") | |
# st.sidebar.markdown("---") | |
# st.sidebar.markdown("🔗 **Connect with me:**") | |
# st.sidebar.markdown(""" | |
# <div style='display: flex; gap: 10px;'> | |
# <a href="https://github.com/Yashvj22" target="_blank"> | |
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;"> | |
# </a> | |
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank"> | |
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# st.sidebar.markdown("---") | |
# st.markdown(""" | |
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1> | |
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3> | |
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p> | |
# <br> | |
# """, unsafe_allow_html=True) | |
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
# temp_file.write(uploaded_file.read()) | |
# orig_path = temp_file.name | |
# # Preprocessing | |
# image = cv2.imread(orig_path) | |
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
# kernel = np.ones((3, 3), np.uint8) | |
# dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
# # Save preprocessed image for future reference/removal | |
# dilated_path = orig_path.replace(".png", "_dilated.png") | |
# cv2.imwrite(dilated_path, dilated) | |
# # OCR using EasyOCR | |
# reader = easyocr.Reader(['en']) | |
# text_list = reader.readtext(dilated, detail=0) | |
# text = "\n".join(text_list) | |
# # Prompt Template | |
# template = """ | |
# You are a helpful medical assistant. | |
# Here is a prescription text extracted from an image: | |
# {prescription_text} | |
# Please do the following: | |
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text). | |
# 2. For each medicine, provide: | |
# - When to take it (timing and dosage) | |
# - Possible side effects | |
# - Any special instructions | |
# Format your answer as bullet points, listing only medicines and their details. | |
# """ | |
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
# llm_model = HuggingFaceEndpoint( | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# llm = ChatHuggingFace( | |
# llm=llm_model, | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# chain = LLMChain(llm=llm, prompt=prompt) | |
# col1, col2 = st.columns([1, 2]) | |
# with col1: | |
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
# with col2: | |
# st.success("✅ Prescription Uploaded & Preprocessed Successfully") | |
# st.markdown("### 📜 Extracted Text") | |
# st.code(text) | |
# if st.button("🔍 Analyze Text"): | |
# with st.spinner("Analyzing..."): | |
# response = chain.run(prescription_text=text) | |
# st.success(response) | |
# # Cleanup temp files | |
# os.remove(orig_path) | |
# os.remove(dilated_path) | |
# else: | |
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True) | |
# import streamlit as st | |
# import cv2 | |
# import numpy as np | |
# import tempfile | |
# import os | |
# # import pytesseract | |
# import easyocr | |
# # from langchain.document_loaders.image import UnstructuredImageLoader | |
# # from langchain_community.document_loaders import UnstructuredImageLoader | |
# from langchain.prompts import PromptTemplate | |
# from langchain.chains import LLMChain | |
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
# # Set Hugging Face API keys | |
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF") | |
# os.environ["HF_TOKEN"] = os.getenv("HF") | |
# st.set_page_config( | |
# page_title="MediAssist - Prescription Analyzer", | |
# layout="wide", | |
# page_icon="💊" | |
# ) | |
# st.sidebar.title("💊 MediAssist") | |
# st.sidebar.markdown("Analyze prescriptions with ease using AI") | |
# st.sidebar.markdown("---") | |
# st.sidebar.markdown("🔗 **Connect with me:**") | |
# st.sidebar.markdown(""" | |
# <div style='display: flex; gap: 10px;'> | |
# <a href="https://github.com/Yashvj22" target="_blank"> | |
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;"> | |
# </a> | |
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank"> | |
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;"> | |
# </a> | |
# </div> | |
# """, unsafe_allow_html=True) | |
# st.sidebar.markdown("---") | |
# st.markdown(""" | |
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1> | |
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3> | |
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p> | |
# <br> | |
# """, unsafe_allow_html=True) | |
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) | |
# if uploaded_file: | |
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
# temp_file.write(uploaded_file.read()) | |
# orig_path = temp_file.name | |
# # Step 1: Read and preprocess image | |
# image = cv2.imread(orig_path) | |
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) | |
# kernel = np.ones((3, 3), np.uint8) | |
# dilated = cv2.dilate(binary_inv, kernel, iterations=1) | |
# reader = easyocr.Reader(['en']) | |
# text_list = reader.readtext(dilated, detail=0) | |
# text = "\n".join(text_list) | |
# # text = pytesseract.image_to_string(dilated) | |
# # Save preprocessed image for OCR | |
# # dilated_path = orig_path.replace(".png", "_dilated.png") | |
# # cv2.imwrite(dilated_path, dilated) | |
# # loader = UnstructuredImageLoader(dilated_path) | |
# # documents = loader.load() | |
# # extracted_text = "\n".join([doc.page_content for doc in documents]) | |
# template = """ | |
# You are a helpful medical assistant. | |
# Here is a prescription text extracted from an image: | |
# {prescription_text} | |
# Please do the following: | |
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text). | |
# 2. For each medicine, provide: | |
# - When to take it (timing and dosage) | |
# - Possible side effects | |
# - Any special instructions | |
# Format your answer as bullet points, listing only medicines and their details. | |
# """ | |
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template) | |
# llm_model = HuggingFaceEndpoint( | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# model = ChatHuggingFace( | |
# llm=llm_model, | |
# repo_id="aaditya/Llama3-OpenBioLLM-70B", | |
# provider="nebius", | |
# temperature=0.6, | |
# max_new_tokens=300, | |
# task="conversational" | |
# ) | |
# chain = LLMChain(llm=model, prompt=prompt) | |
# col1, col2 = st.columns([1, 2]) | |
# with col1: | |
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) | |
# with col2: | |
# st.success("✅ Prescription Uploaded & Preprocessed Successfully") | |
# st.markdown("### 📜 Extracted Text") | |
# st.code(text) | |
# # st.code(extracted_text) | |
# if st.button("🔍 Analyze Text"): | |
# with st.spinner("Analyzing..."): | |
# response = chain.run(prescription_text=text) | |
# # response = chain.run(prescription_text=extracted_text) | |
# st.success(response) | |
# # Cleanup temp files | |
# os.remove(orig_path) | |
# os.remove(dilated_path) | |
# else: | |
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True) | |
# st.markdown("### 🌐 Translated Text") | |
# st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text') | |
# st.markdown("### ⏱️ Tablet Timing & Instructions") | |
# st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours") | |
# st.markdown("### ⚠️ Possible Side Effects") | |
# st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)") | |
# os.remove(temp_path) | |
# os.remove(orig_path) | |
# os.remove(dilated_path) |