File size: 15,819 Bytes
290e3a2
 
 
 
 
73ca971
49ac78b
 
290e3a2
0aec70a
a8487e6
64942d2
49ac78b
0aec70a
49ac78b
0aec70a
 
 
49ac78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290e3a2
 
49ac78b
 
 
 
 
 
 
 
 
290e3a2
 
49ac78b
 
 
290e3a2
 
a8487e6
 
 
 
d4b42e3
49ac78b
a8487e6
 
 
 
 
d4b42e3
d4b093a
 
 
49ac78b
73ca971
 
 
 
49ac78b
 
 
 
 
 
 
 
d4b093a
49ac78b
 
 
 
 
 
 
 
 
 
 
 
a8487e6
 
0aec70a
49a4a02
d4b093a
 
a8487e6
 
 
 
49ac78b
d4b093a
49a4a02
d4b093a
 
49a4a02
 
 
 
49ac78b
d4b093a
 
49ac78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290e3a2
 
a8487e6
0aec70a
a8487e6
49ac78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8487e6
 
290e3a2
d4b093a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aec70a
 
290e3a2
0aec70a
 
290e3a2
0aec70a
 
290e3a2
a8487e6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import streamlit as st
import cv2
import numpy as np
import tempfile
import os
import easyocr
from PIL import Image, ImageDraw, ImageFont
from translate import Translator

from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from transformers import pipeline

# Set API keys
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
os.environ["HF_TOKEN"] = os.getenv("HF")

# Function to save text as an image
def save_text_as_image(text, file_path):
    font = ImageFont.load_default()
    lines = text.split('\n')
    max_width = max([font.getbbox(line)[2] for line in lines]) + 20
    line_height = font.getbbox(text)[3] + 10
    img_height = line_height * len(lines) + 20

    img = Image.new("RGB", (max_width, img_height), "white")
    draw = ImageDraw.Draw(img)
    y = 10
    for line in lines:
        draw.text((10, y), line, font=font, fill="black")
        y += line_height

    img.save(file_path)
    return file_path

# Setup
st.set_page_config(page_title="MediAssist 💊", layout="wide")

st.markdown("""
    <style>
    .stButton>button {
        background-color: #4CAF50;
        color: white;
        font-weight: bold;
        padding: 8px 20px;
        border-radius: 8px;
    }
    </style>
""", unsafe_allow_html=True)

st.title("💊 MediAssist - Prescription Analyzer")
st.markdown("##### Upload your prescription, get AI-based medicine insights, translate and download!")

uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])

if uploaded_file:
    with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
        temp_file.write(uploaded_file.read())
        orig_path = temp_file.name

    # Preprocess Image
    image = cv2.imread(orig_path)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
    kernel = np.ones((3, 3), np.uint8)
    dilated = cv2.dilate(binary_inv, kernel, iterations=1)

    dilated_path = orig_path.replace(".png", "_dilated.png")
    cv2.imwrite(dilated_path, dilated)

    # OCR
    reader = easyocr.Reader(['en'])
    text_list = reader.readtext(dilated, detail=0)
    text = "\n".join(text_list)

    # Display
    col1, col2 = st.columns([1, 2])
    with col1:
        st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
    with col2:
        st.success("✅ Image Uploaded and Preprocessed")
        st.markdown("#### 📝 Extracted Text from Image")
        st.code(text)

    # Prompt
    template = """
    You are a helpful medical assistant.
    Here is a prescription text extracted from an image:
    {prescription_text}
    Please do the following:
    1. Extract only the medicine names.
    2. For each, give:
       - Dosage and Timing
       - Possible Side Effects
       - Special Instructions
    Format in bullet points, medicine-wise.
    """
    prompt = PromptTemplate(input_variables=["prescription_text"], template=template)

    llm_model = HuggingFaceEndpoint(
        repo_id="aaditya/Llama3-OpenBioLLM-70B",
        provider="nebius",
        temperature=0.6,
        max_new_tokens=300,
        task="conversational"
    )
    
    llm = ChatHuggingFace(
        llm=llm_model,
        repo_id="aaditya/Llama3-OpenBioLLM-70B",
        provider="nebius",
        temperature=0.6,
        max_new_tokens=300,
        task="conversational"
    )
    
    chain = LLMChain(llm=llm, prompt=prompt)

    if st.button("🔍 Analyze Extracted Text"):
        with st.spinner("Analyzing with LLM..."):
            response = chain.run(prescription_text=text)
        st.markdown("#### 💡 Analyzed Medicine Info")
        st.text_area("Output", response, height=300)

        # Save txt and image
        txt_path = "prescription_output.txt"
        with open(txt_path, "w") as f:
            f.write(response)

        img_path = "prescription_output.png"
        save_text_as_image(response, img_path)

        # Target language code (like 'hi' for Hindi, 'mr' for Marathi, 'gu' for Gujarati)
        target_lang = "hi"  
        
        translator = Translator(to_lang=target_lang)
        hindi_text = translator.translate(response)

        # # Translation to Hindi
        # translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-hi")
        # hindi_text = translator(response, max_length=400)[0]['translation_text']

        st.markdown("#### 🌐 Translate to Hindi")
        st.text_area("Translated (Hindi)", hindi_text, height=300)

        st.markdown("#### 📥 Download Options")
        colA, colB, colC, colD = st.columns(4)
        with colA:
            st.download_button("⬇️ Download TXT", data=response, file_name="medicine_analysis.txt")
        with colB:
            with open(img_path, "rb") as img_file:
                st.download_button("🖼️ Download Image", data=img_file, file_name="medicine_analysis.png", mime="image/png")
        with colC:
            st.download_button("⬇️ Hindi TXT", data=hindi_text, file_name="hindi_medicine_analysis.txt")
        with colD:
            hindi_img_path = "hindi_output.png"
            save_text_as_image(hindi_text, hindi_img_path)
            with open(hindi_img_path, "rb") as hindi_img_file:
                st.download_button("🖼️ Hindi Image", data=hindi_img_file, file_name="hindi_output.png", mime="image/png")

    # Cleanup
    os.remove(orig_path)
    os.remove(dilated_path)
else:
    st.markdown("<center><i>📸 Upload a prescription image to get started</i></center>", unsafe_allow_html=True)





# import streamlit as st
# import cv2
# import numpy as np
# import tempfile
# import os
# import easyocr

# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace

# # Set Hugging Face API keys
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
# os.environ["HF_TOKEN"] = os.getenv("HF")

# # Streamlit page setup
# st.set_page_config(
#     page_title="MediAssist - Prescription Analyzer",
#     layout="wide",
#     page_icon="💊"
# )

# st.sidebar.title("💊 MediAssist")
# st.sidebar.markdown("Analyze prescriptions with ease using AI")
# st.sidebar.markdown("---")
# st.sidebar.markdown("🔗 **Connect with me:**")
# st.sidebar.markdown("""
# <div style='display: flex; gap: 10px;'>
#     <a href="https://github.com/Yashvj22" target="_blank">
#         <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
#     </a>
#     <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
#         <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
#     </a>
# </div>
# """, unsafe_allow_html=True)
# st.sidebar.markdown("---")

# st.markdown("""
#     <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
#     <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
#     <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
#     <br>
# """, unsafe_allow_html=True)

# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])

# if uploaded_file:
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
#         temp_file.write(uploaded_file.read())
#         orig_path = temp_file.name

#     # Preprocessing
#     image = cv2.imread(orig_path)
#     gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#     _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
#     kernel = np.ones((3, 3), np.uint8)
#     dilated = cv2.dilate(binary_inv, kernel, iterations=1)

#     # Save preprocessed image for future reference/removal
#     dilated_path = orig_path.replace(".png", "_dilated.png")
#     cv2.imwrite(dilated_path, dilated)

#     # OCR using EasyOCR
#     reader = easyocr.Reader(['en'])
#     text_list = reader.readtext(dilated, detail=0)
#     text = "\n".join(text_list)

#     # Prompt Template
#     template = """
#         You are a helpful medical assistant.

#         Here is a prescription text extracted from an image:

#         {prescription_text}

#         Please do the following:

#         1. Extract only the medicine names mentioned in the prescription (ignore any other text).
#         2. For each medicine, provide:
#            - When to take it (timing and dosage)
#            - Possible side effects
#            - Any special instructions

#         Format your answer as bullet points, listing only medicines and their details.
#     """
#     prompt = PromptTemplate(input_variables=["prescription_text"], template=template)

#     llm_model = HuggingFaceEndpoint(
#         repo_id="aaditya/Llama3-OpenBioLLM-70B",
#         provider="nebius",
#         temperature=0.6,
#         max_new_tokens=300,
#         task="conversational"
#     )

#     llm = ChatHuggingFace(
#         llm=llm_model,
#         repo_id="aaditya/Llama3-OpenBioLLM-70B",
#         provider="nebius",
#         temperature=0.6,
#         max_new_tokens=300,
#         task="conversational"
#     )

#     chain = LLMChain(llm=llm, prompt=prompt)

#     col1, col2 = st.columns([1, 2])

#     with col1:
#         st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)

#     with col2:
#         st.success("✅ Prescription Uploaded & Preprocessed Successfully")
#         st.markdown("### 📜 Extracted Text")
#         st.code(text)

#         if st.button("🔍 Analyze Text"):
#             with st.spinner("Analyzing..."):
#                 response = chain.run(prescription_text=text)
#             st.success(response)

#     # Cleanup temp files
#     os.remove(orig_path)
#     os.remove(dilated_path)

# else:
#     st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)





# import streamlit as st
# import cv2
# import numpy as np
# import tempfile
# import os
# # import pytesseract
# import easyocr

# # from langchain.document_loaders.image import UnstructuredImageLoader
# # from langchain_community.document_loaders import UnstructuredImageLoader
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace

# # Set Hugging Face API keys
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
# os.environ["HF_TOKEN"] = os.getenv("HF")

# st.set_page_config(
#     page_title="MediAssist - Prescription Analyzer",
#     layout="wide",
#     page_icon="💊"
# )

# st.sidebar.title("💊 MediAssist")
# st.sidebar.markdown("Analyze prescriptions with ease using AI")
# st.sidebar.markdown("---")

# st.sidebar.markdown("🔗 **Connect with me:**")
# st.sidebar.markdown("""
# <div style='display: flex; gap: 10px;'>
#     <a href="https://github.com/Yashvj22" target="_blank">
#         <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
#     </a>
#     <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
#         <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
#     </a>
# </div>
# """, unsafe_allow_html=True)
# st.sidebar.markdown("---")

# st.markdown("""
#     <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
#     <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
#     <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
#     <br>
# """, unsafe_allow_html=True)

# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])

# if uploaded_file:
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
#         temp_file.write(uploaded_file.read())
#         orig_path = temp_file.name

#     # Step 1: Read and preprocess image
#     image = cv2.imread(orig_path)
#     gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#     _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
#     kernel = np.ones((3, 3), np.uint8)
#     dilated = cv2.dilate(binary_inv, kernel, iterations=1)

#     reader = easyocr.Reader(['en'])
#     text_list = reader.readtext(dilated, detail=0)
#     text = "\n".join(text_list)

#     # text = pytesseract.image_to_string(dilated)

#     # Save preprocessed image for OCR
#     # dilated_path = orig_path.replace(".png", "_dilated.png")
#     # cv2.imwrite(dilated_path, dilated)

#     # loader = UnstructuredImageLoader(dilated_path)
#     # documents = loader.load()
#     # extracted_text = "\n".join([doc.page_content for doc in documents])

#     template = """
#         You are a helpful medical assistant.
        
#         Here is a prescription text extracted from an image:
        
#         {prescription_text}
        
#         Please do the following:
        
#         1. Extract only the medicine names mentioned in the prescription (ignore any other text).
#         2. For each medicine, provide:
#            - When to take it (timing and dosage)
#            - Possible side effects
#            - Any special instructions
        
#         Format your answer as bullet points, listing only medicines and their details.
#     """
#     prompt = PromptTemplate(input_variables=["prescription_text"], template=template)

#     llm_model = HuggingFaceEndpoint(
#         repo_id="aaditya/Llama3-OpenBioLLM-70B",
#         provider="nebius",
#         temperature=0.6,
#         max_new_tokens=300,
#         task="conversational"
#     )

#     model = ChatHuggingFace(
#         llm=llm_model,
#         repo_id="aaditya/Llama3-OpenBioLLM-70B",
#         provider="nebius",
#         temperature=0.6,
#         max_new_tokens=300,
#         task="conversational"
#     )
    
#     chain = LLMChain(llm=model, prompt=prompt)

   
#     col1, col2 = st.columns([1, 2])

#     with col1:
#         st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)

#     with col2:
#         st.success("✅ Prescription Uploaded & Preprocessed Successfully")

#         st.markdown("### 📜 Extracted Text")
#         st.code(text)
    
#         # st.code(extracted_text)

#         if st.button("🔍 Analyze Text"):
#             with st.spinner("Analyzing..."):
#                 response = chain.run(prescription_text=text)
#                 # response = chain.run(prescription_text=extracted_text)
#             st.success(response)

#     # Cleanup temp files
#     os.remove(orig_path)
#     os.remove(dilated_path)

# else:
#     st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)



        # st.markdown("### 🌐 Translated Text")
        # st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text')

        # st.markdown("### ⏱️ Tablet Timing & Instructions")
        # st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours")

        # st.markdown("### ⚠️ Possible Side Effects")
        # st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)")

    # os.remove(temp_path)
    # os.remove(orig_path)
    # os.remove(dilated_path)