Spaces:
Running
Running
File size: 15,819 Bytes
290e3a2 73ca971 49ac78b 290e3a2 0aec70a a8487e6 64942d2 49ac78b 0aec70a 49ac78b 0aec70a 49ac78b 290e3a2 49ac78b 290e3a2 49ac78b 290e3a2 a8487e6 d4b42e3 49ac78b a8487e6 d4b42e3 d4b093a 49ac78b 73ca971 49ac78b d4b093a 49ac78b a8487e6 0aec70a 49a4a02 d4b093a a8487e6 49ac78b d4b093a 49a4a02 d4b093a 49a4a02 49ac78b d4b093a 49ac78b 290e3a2 a8487e6 0aec70a a8487e6 49ac78b a8487e6 290e3a2 d4b093a 0aec70a 290e3a2 0aec70a 290e3a2 0aec70a 290e3a2 a8487e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import streamlit as st
import cv2
import numpy as np
import tempfile
import os
import easyocr
from PIL import Image, ImageDraw, ImageFont
from translate import Translator
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
from transformers import pipeline
# Set API keys
os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
os.environ["HF_TOKEN"] = os.getenv("HF")
# Function to save text as an image
def save_text_as_image(text, file_path):
font = ImageFont.load_default()
lines = text.split('\n')
max_width = max([font.getbbox(line)[2] for line in lines]) + 20
line_height = font.getbbox(text)[3] + 10
img_height = line_height * len(lines) + 20
img = Image.new("RGB", (max_width, img_height), "white")
draw = ImageDraw.Draw(img)
y = 10
for line in lines:
draw.text((10, y), line, font=font, fill="black")
y += line_height
img.save(file_path)
return file_path
# Setup
st.set_page_config(page_title="MediAssist 💊", layout="wide")
st.markdown("""
<style>
.stButton>button {
background-color: #4CAF50;
color: white;
font-weight: bold;
padding: 8px 20px;
border-radius: 8px;
}
</style>
""", unsafe_allow_html=True)
st.title("💊 MediAssist - Prescription Analyzer")
st.markdown("##### Upload your prescription, get AI-based medicine insights, translate and download!")
uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
if uploaded_file:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
temp_file.write(uploaded_file.read())
orig_path = temp_file.name
# Preprocess Image
image = cv2.imread(orig_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
kernel = np.ones((3, 3), np.uint8)
dilated = cv2.dilate(binary_inv, kernel, iterations=1)
dilated_path = orig_path.replace(".png", "_dilated.png")
cv2.imwrite(dilated_path, dilated)
# OCR
reader = easyocr.Reader(['en'])
text_list = reader.readtext(dilated, detail=0)
text = "\n".join(text_list)
# Display
col1, col2 = st.columns([1, 2])
with col1:
st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
with col2:
st.success("✅ Image Uploaded and Preprocessed")
st.markdown("#### 📝 Extracted Text from Image")
st.code(text)
# Prompt
template = """
You are a helpful medical assistant.
Here is a prescription text extracted from an image:
{prescription_text}
Please do the following:
1. Extract only the medicine names.
2. For each, give:
- Dosage and Timing
- Possible Side Effects
- Special Instructions
Format in bullet points, medicine-wise.
"""
prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
llm_model = HuggingFaceEndpoint(
repo_id="aaditya/Llama3-OpenBioLLM-70B",
provider="nebius",
temperature=0.6,
max_new_tokens=300,
task="conversational"
)
llm = ChatHuggingFace(
llm=llm_model,
repo_id="aaditya/Llama3-OpenBioLLM-70B",
provider="nebius",
temperature=0.6,
max_new_tokens=300,
task="conversational"
)
chain = LLMChain(llm=llm, prompt=prompt)
if st.button("🔍 Analyze Extracted Text"):
with st.spinner("Analyzing with LLM..."):
response = chain.run(prescription_text=text)
st.markdown("#### 💡 Analyzed Medicine Info")
st.text_area("Output", response, height=300)
# Save txt and image
txt_path = "prescription_output.txt"
with open(txt_path, "w") as f:
f.write(response)
img_path = "prescription_output.png"
save_text_as_image(response, img_path)
# Target language code (like 'hi' for Hindi, 'mr' for Marathi, 'gu' for Gujarati)
target_lang = "hi"
translator = Translator(to_lang=target_lang)
hindi_text = translator.translate(response)
# # Translation to Hindi
# translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-hi")
# hindi_text = translator(response, max_length=400)[0]['translation_text']
st.markdown("#### 🌐 Translate to Hindi")
st.text_area("Translated (Hindi)", hindi_text, height=300)
st.markdown("#### 📥 Download Options")
colA, colB, colC, colD = st.columns(4)
with colA:
st.download_button("⬇️ Download TXT", data=response, file_name="medicine_analysis.txt")
with colB:
with open(img_path, "rb") as img_file:
st.download_button("🖼️ Download Image", data=img_file, file_name="medicine_analysis.png", mime="image/png")
with colC:
st.download_button("⬇️ Hindi TXT", data=hindi_text, file_name="hindi_medicine_analysis.txt")
with colD:
hindi_img_path = "hindi_output.png"
save_text_as_image(hindi_text, hindi_img_path)
with open(hindi_img_path, "rb") as hindi_img_file:
st.download_button("🖼️ Hindi Image", data=hindi_img_file, file_name="hindi_output.png", mime="image/png")
# Cleanup
os.remove(orig_path)
os.remove(dilated_path)
else:
st.markdown("<center><i>📸 Upload a prescription image to get started</i></center>", unsafe_allow_html=True)
# import streamlit as st
# import cv2
# import numpy as np
# import tempfile
# import os
# import easyocr
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
# # Set Hugging Face API keys
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
# os.environ["HF_TOKEN"] = os.getenv("HF")
# # Streamlit page setup
# st.set_page_config(
# page_title="MediAssist - Prescription Analyzer",
# layout="wide",
# page_icon="💊"
# )
# st.sidebar.title("💊 MediAssist")
# st.sidebar.markdown("Analyze prescriptions with ease using AI")
# st.sidebar.markdown("---")
# st.sidebar.markdown("🔗 **Connect with me:**")
# st.sidebar.markdown("""
# <div style='display: flex; gap: 10px;'>
# <a href="https://github.com/Yashvj22" target="_blank">
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
# </a>
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
# </a>
# </div>
# """, unsafe_allow_html=True)
# st.sidebar.markdown("---")
# st.markdown("""
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
# <br>
# """, unsafe_allow_html=True)
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
# if uploaded_file:
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
# temp_file.write(uploaded_file.read())
# orig_path = temp_file.name
# # Preprocessing
# image = cv2.imread(orig_path)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
# kernel = np.ones((3, 3), np.uint8)
# dilated = cv2.dilate(binary_inv, kernel, iterations=1)
# # Save preprocessed image for future reference/removal
# dilated_path = orig_path.replace(".png", "_dilated.png")
# cv2.imwrite(dilated_path, dilated)
# # OCR using EasyOCR
# reader = easyocr.Reader(['en'])
# text_list = reader.readtext(dilated, detail=0)
# text = "\n".join(text_list)
# # Prompt Template
# template = """
# You are a helpful medical assistant.
# Here is a prescription text extracted from an image:
# {prescription_text}
# Please do the following:
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text).
# 2. For each medicine, provide:
# - When to take it (timing and dosage)
# - Possible side effects
# - Any special instructions
# Format your answer as bullet points, listing only medicines and their details.
# """
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
# llm_model = HuggingFaceEndpoint(
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# llm = ChatHuggingFace(
# llm=llm_model,
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# chain = LLMChain(llm=llm, prompt=prompt)
# col1, col2 = st.columns([1, 2])
# with col1:
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
# with col2:
# st.success("✅ Prescription Uploaded & Preprocessed Successfully")
# st.markdown("### 📜 Extracted Text")
# st.code(text)
# if st.button("🔍 Analyze Text"):
# with st.spinner("Analyzing..."):
# response = chain.run(prescription_text=text)
# st.success(response)
# # Cleanup temp files
# os.remove(orig_path)
# os.remove(dilated_path)
# else:
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)
# import streamlit as st
# import cv2
# import numpy as np
# import tempfile
# import os
# # import pytesseract
# import easyocr
# # from langchain.document_loaders.image import UnstructuredImageLoader
# # from langchain_community.document_loaders import UnstructuredImageLoader
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
# # Set Hugging Face API keys
# os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("HF")
# os.environ["HF_TOKEN"] = os.getenv("HF")
# st.set_page_config(
# page_title="MediAssist - Prescription Analyzer",
# layout="wide",
# page_icon="💊"
# )
# st.sidebar.title("💊 MediAssist")
# st.sidebar.markdown("Analyze prescriptions with ease using AI")
# st.sidebar.markdown("---")
# st.sidebar.markdown("🔗 **Connect with me:**")
# st.sidebar.markdown("""
# <div style='display: flex; gap: 10px;'>
# <a href="https://github.com/Yashvj22" target="_blank">
# <img src="https://img.shields.io/badge/GitHub-100000?style=for-the-badge&logo=github&logoColor=white" style="height:30px;">
# </a>
# <a href="https://www.linkedin.com/in/yash-jadhav-454b0a237/" target="_blank">
# <img src="https://img.shields.io/badge/LinkedIn-0A66C2?style=for-the-badge&logo=linkedin&logoColor=white" style="height:30px;">
# </a>
# </div>
# """, unsafe_allow_html=True)
# st.sidebar.markdown("---")
# st.markdown("""
# <h1 style='text-align: center; color: #4A90E2;'>🧠 MediAssist</h1>
# <h3 style='text-align: center;'>Prescription Analyzer using AI and OCR</h3>
# <p style='text-align: center;'>Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.</p>
# <br>
# """, unsafe_allow_html=True)
# uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"])
# if uploaded_file:
# with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
# temp_file.write(uploaded_file.read())
# orig_path = temp_file.name
# # Step 1: Read and preprocess image
# image = cv2.imread(orig_path)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
# kernel = np.ones((3, 3), np.uint8)
# dilated = cv2.dilate(binary_inv, kernel, iterations=1)
# reader = easyocr.Reader(['en'])
# text_list = reader.readtext(dilated, detail=0)
# text = "\n".join(text_list)
# # text = pytesseract.image_to_string(dilated)
# # Save preprocessed image for OCR
# # dilated_path = orig_path.replace(".png", "_dilated.png")
# # cv2.imwrite(dilated_path, dilated)
# # loader = UnstructuredImageLoader(dilated_path)
# # documents = loader.load()
# # extracted_text = "\n".join([doc.page_content for doc in documents])
# template = """
# You are a helpful medical assistant.
# Here is a prescription text extracted from an image:
# {prescription_text}
# Please do the following:
# 1. Extract only the medicine names mentioned in the prescription (ignore any other text).
# 2. For each medicine, provide:
# - When to take it (timing and dosage)
# - Possible side effects
# - Any special instructions
# Format your answer as bullet points, listing only medicines and their details.
# """
# prompt = PromptTemplate(input_variables=["prescription_text"], template=template)
# llm_model = HuggingFaceEndpoint(
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# model = ChatHuggingFace(
# llm=llm_model,
# repo_id="aaditya/Llama3-OpenBioLLM-70B",
# provider="nebius",
# temperature=0.6,
# max_new_tokens=300,
# task="conversational"
# )
# chain = LLMChain(llm=model, prompt=prompt)
# col1, col2 = st.columns([1, 2])
# with col1:
# st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True)
# with col2:
# st.success("✅ Prescription Uploaded & Preprocessed Successfully")
# st.markdown("### 📜 Extracted Text")
# st.code(text)
# # st.code(extracted_text)
# if st.button("🔍 Analyze Text"):
# with st.spinner("Analyzing..."):
# response = chain.run(prescription_text=text)
# # response = chain.run(prescription_text=extracted_text)
# st.success(response)
# # Cleanup temp files
# os.remove(orig_path)
# os.remove(dilated_path)
# else:
# st.markdown("<center><i>Upload a prescription image to begin analysis.</i></center>", unsafe_allow_html=True)
# st.markdown("### 🌐 Translated Text")
# st.code("पेरासिटामोल 500 मिलीग्राम\nभोजन के बाद दिन में दो बार 1 गोली लें", language='text')
# st.markdown("### ⏱️ Tablet Timing & Instructions")
# st.info("- Morning after breakfast\n- Night after dinner\n- Take with water\n- Do not exceed 2 tablets in 24 hours")
# st.markdown("### ⚠️ Possible Side Effects")
# st.warning("- Nausea\n- Dizziness\n- Liver damage (on overdose)")
# os.remove(temp_path)
# os.remove(orig_path)
# os.remove(dilated_path) |