Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from PIL import Image | |
# Load model & processor once at startup | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
def smoldocling_readimage(image, prompt_text): | |
messages = [ | |
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} | |
] | |
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[image], return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=1024) | |
prompt_length = inputs.input_ids.shape[1] | |
generated = outputs[:, prompt_length:] | |
result = processor.batch_decode(generated, skip_special_tokens=False)[0] | |
return result.replace("<end_of_utterance>", "").strip() | |
# Gradio UI | |
demo = gr.Interface( | |
fn=smoldocling_readimage, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"), | |
], | |
outputs="text", | |
title="SmolDocling Web App", | |
description="Upload a document image and convert it to structured docling format." | |
) | |
demo.launch() | |