File size: 1,313 Bytes
9bcdecb
b6538da
 
 
9bcdecb
 
 
b6538da
9bcdecb
b6538da
9bcdecb
b6538da
 
 
9bcdecb
b6538da
9bcdecb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image

# Load model & processor once at startup
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForImageTextToText.from_pretrained("ds4sd/SmolDocling-256M-preview")

def smoldocling_readimage(image, prompt_text):
    messages = [
        {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]}
    ]
    prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = processor(text=prompt, images=[image], return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=1024)
    prompt_length = inputs.input_ids.shape[1]
    generated = outputs[:, prompt_length:]
    result = processor.batch_decode(generated, skip_special_tokens=False)[0]
    return result.replace("<end_of_utterance>", "").strip()

# Gradio UI
demo = gr.Interface(
    fn=smoldocling_readimage,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Textbox(lines=1, placeholder="Enter prompt (e.g. Convert to docling)", label="Prompt"),
    ],
    outputs="text",
    title="SmolDocling Web App",
    description="Upload a document image and convert it to structured docling format."
)

demo.launch()