Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import torch | |
import yaml | |
import numpy as np | |
from torchvision.models import convnext_base, convnext_small | |
from torch import nn as nn | |
import facer | |
from torch import Tensor | |
import math | |
from typing import Any, Optional, Tuple, Type | |
from torch.nn import functional as F | |
import torchvision | |
from torchvision import transforms as T | |
from src.flux.generate import generate | |
from diffusers.pipelines import FluxPipeline | |
from src.flux.condition import Condition | |
from src.moe.mogle import MoGLE | |
class LayerNorm2d(nn.Module): | |
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
self.bias = nn.Parameter(torch.zeros(num_channels)) | |
self.eps = eps | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
hidden_dim: int, | |
output_dim: int, | |
num_layers: int, | |
sigmoid_output: bool = False, | |
) -> None: | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList( | |
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) | |
) | |
self.sigmoid_output = sigmoid_output | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
if self.sigmoid_output: | |
x = F.sigmoid(x) | |
return x | |
class FaceDecoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
transformer_dim: 256, | |
transformer: nn.Module, | |
activation: Type[nn.Module] = nn.GELU, | |
) -> None: | |
super().__init__() | |
self.transformer_dim = transformer_dim | |
self.transformer = transformer | |
self.background_token = nn.Embedding(1, transformer_dim) | |
self.neck_token = nn.Embedding(1, transformer_dim) | |
self.face_token = nn.Embedding(1, transformer_dim) | |
self.cloth_token = nn.Embedding(1, transformer_dim) | |
self.rightear_token = nn.Embedding(1, transformer_dim) | |
self.leftear_token = nn.Embedding(1, transformer_dim) | |
self.rightbro_token = nn.Embedding(1, transformer_dim) | |
self.leftbro_token = nn.Embedding(1, transformer_dim) | |
self.righteye_token = nn.Embedding(1, transformer_dim) | |
self.lefteye_token = nn.Embedding(1, transformer_dim) | |
self.nose_token = nn.Embedding(1, transformer_dim) | |
self.innermouth_token = nn.Embedding(1, transformer_dim) | |
self.lowerlip_token = nn.Embedding(1, transformer_dim) | |
self.upperlip_token = nn.Embedding(1, transformer_dim) | |
self.hair_token = nn.Embedding(1, transformer_dim) | |
self.glass_token = nn.Embedding(1, transformer_dim) | |
self.hat_token = nn.Embedding(1, transformer_dim) | |
self.earring_token = nn.Embedding(1, transformer_dim) | |
self.necklace_token = nn.Embedding(1, transformer_dim) | |
self.output_upscaling = nn.Sequential( | |
nn.ConvTranspose2d( | |
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 | |
), | |
LayerNorm2d(transformer_dim // 4), | |
activation(), | |
nn.ConvTranspose2d( | |
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 | |
), | |
activation(), | |
) | |
self.output_hypernetwork_mlps = MLP( | |
transformer_dim, transformer_dim, transformer_dim // 8, 3 | |
) | |
def forward( | |
self, | |
image_embeddings: torch.Tensor, | |
image_pe: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
image_embeddings - torch.Size([1, 256, 128, 128]) | |
image_pe - torch.Size([1, 256, 128, 128]) | |
""" | |
output_tokens = torch.cat( | |
[ | |
self.background_token.weight, | |
self.neck_token.weight, | |
self.face_token.weight, | |
self.cloth_token.weight, | |
self.rightear_token.weight, | |
self.leftear_token.weight, | |
self.rightbro_token.weight, | |
self.leftbro_token.weight, | |
self.righteye_token.weight, | |
self.lefteye_token.weight, | |
self.nose_token.weight, | |
self.innermouth_token.weight, | |
self.lowerlip_token.weight, | |
self.upperlip_token.weight, | |
self.hair_token.weight, | |
self.glass_token.weight, | |
self.hat_token.weight, | |
self.earring_token.weight, | |
self.necklace_token.weight, | |
], | |
dim=0, | |
) | |
tokens = output_tokens.unsqueeze(0).expand( | |
image_embeddings.size(0), -1, -1 | |
) ##### torch.Size([4, 11, 256]) | |
src = image_embeddings ##### torch.Size([4, 256, 128, 128]) | |
pos_src = image_pe.expand(image_embeddings.size(0), -1, -1, -1) | |
b, c, h, w = src.shape | |
# Run the transformer | |
hs, src = self.transformer( | |
src, pos_src, tokens | |
) ####### hs - torch.Size([BS, 11, 256]), src - torch.Size([BS, 16348, 256]) | |
mask_token_out = hs[:, :, :] | |
src = src.transpose(1, 2).view(b, c, h, w) ##### torch.Size([4, 256, 128, 128]) | |
upscaled_embedding = self.output_upscaling( | |
src | |
) ##### torch.Size([4, 32, 512, 512]) | |
hyper_in = self.output_hypernetwork_mlps( | |
mask_token_out | |
) ##### torch.Size([1, 11, 32]) | |
b, c, h, w = upscaled_embedding.shape | |
seg_output = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view( | |
b, -1, h, w | |
) ##### torch.Size([1, 11, 512, 512]) | |
return seg_output | |
class PositionEmbeddingRandom(nn.Module): | |
""" | |
Positional encoding using random spatial frequencies. | |
""" | |
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: | |
super().__init__() | |
if scale is None or scale <= 0.0: | |
scale = 1.0 | |
self.register_buffer( | |
"positional_encoding_gaussian_matrix", | |
scale * torch.randn((2, num_pos_feats)), | |
) | |
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: | |
"""Positionally encode points that are normalized to [0,1].""" | |
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape | |
coords = 2 * coords - 1 | |
coords = coords @ self.positional_encoding_gaussian_matrix | |
coords = 2 * np.pi * coords | |
# outputs d_1 x ... x d_n x C shape | |
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) | |
def forward(self, size: Tuple[int, int]) -> torch.Tensor: | |
"""Generate positional encoding for a grid of the specified size.""" | |
h, w = size | |
device: Any = self.positional_encoding_gaussian_matrix.device | |
grid = torch.ones((h, w), device=device, dtype=torch.float32) | |
y_embed = grid.cumsum(dim=0) - 0.5 | |
x_embed = grid.cumsum(dim=1) - 0.5 | |
y_embed = y_embed / h | |
x_embed = x_embed / w | |
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) | |
return pe.permute(2, 0, 1) # C x H x W | |
def forward_with_coords( | |
self, coords_input: torch.Tensor, image_size: Tuple[int, int] | |
) -> torch.Tensor: | |
"""Positionally encode points that are not normalized to [0,1].""" | |
coords = coords_input.clone() | |
coords[:, :, 0] = coords[:, :, 0] / image_size[1] | |
coords[:, :, 1] = coords[:, :, 1] / image_size[0] | |
return self._pe_encoding(coords.to(torch.float)) # B x N x C | |
class TwoWayTransformer(nn.Module): | |
def __init__( | |
self, | |
depth: int, | |
embedding_dim: int, | |
num_heads: int, | |
mlp_dim: int, | |
activation: Type[nn.Module] = nn.ReLU, | |
attention_downsample_rate: int = 2, | |
) -> None: | |
""" | |
A transformer decoder that attends to an input image using | |
queries whose positional embedding is supplied. | |
Args: | |
depth (int): number of layers in the transformer | |
embedding_dim (int): the channel dimension for the input embeddings | |
num_heads (int): the number of heads for multihead attention. Must | |
divide embedding_dim | |
mlp_dim (int): the channel dimension internal to the MLP block | |
activation (nn.Module): the activation to use in the MLP block | |
""" | |
super().__init__() | |
self.depth = depth | |
self.embedding_dim = embedding_dim | |
self.num_heads = num_heads | |
self.mlp_dim = mlp_dim | |
self.layers = nn.ModuleList() | |
for i in range(depth): | |
self.layers.append( | |
TwoWayAttentionBlock( | |
embedding_dim=embedding_dim, | |
num_heads=num_heads, | |
mlp_dim=mlp_dim, | |
activation=activation, | |
attention_downsample_rate=attention_downsample_rate, | |
skip_first_layer_pe=(i == 0), | |
) | |
) | |
self.final_attn_token_to_image = Attention( | |
embedding_dim, num_heads, downsample_rate=attention_downsample_rate | |
) | |
self.norm_final_attn = nn.LayerNorm(embedding_dim) | |
def forward( | |
self, | |
image_embedding: Tensor, | |
image_pe: Tensor, | |
point_embedding: Tensor, | |
) -> Tuple[Tensor, Tensor]: | |
""" | |
Args: | |
image_embedding (torch.Tensor): image to attend to. Should be shape | |
B x embedding_dim x h x w for any h and w. | |
image_pe (torch.Tensor): the positional encoding to add to the image. Must | |
have the same shape as image_embedding. | |
point_embedding (torch.Tensor): the embedding to add to the query points. | |
Must have shape B x N_points x embedding_dim for any N_points. | |
Returns: | |
torch.Tensor: the processed point_embedding | |
torch.Tensor: the processed image_embedding | |
""" | |
# BxCxHxW -> BxHWxC == B x N_image_tokens x C | |
bs, c, h, w = image_embedding.shape | |
image_embedding = image_embedding.flatten(2).permute(0, 2, 1) | |
image_pe = image_pe.flatten(2).permute(0, 2, 1) | |
# Prepare queries | |
queries = point_embedding | |
keys = image_embedding | |
# Apply transformer blocks and final layernorm | |
for layer in self.layers: | |
queries, keys = layer( | |
queries=queries, | |
keys=keys, | |
query_pe=point_embedding, | |
key_pe=image_pe, | |
) | |
# Apply the final attention layer from the points to the image | |
q = queries + point_embedding | |
k = keys + image_pe | |
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) | |
queries = queries + attn_out | |
queries = self.norm_final_attn(queries) | |
return queries, keys | |
class MLPBlock(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
mlp_dim: int, | |
act: Type[nn.Module] = nn.GELU, | |
) -> None: | |
super().__init__() | |
self.lin1 = nn.Linear(embedding_dim, mlp_dim) | |
self.lin2 = nn.Linear(mlp_dim, embedding_dim) | |
self.act = act() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.lin2(self.act(self.lin1(x))) | |
class TwoWayAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
num_heads: int, | |
mlp_dim: int = 2048, | |
activation: Type[nn.Module] = nn.ReLU, | |
attention_downsample_rate: int = 2, | |
skip_first_layer_pe: bool = False, | |
) -> None: | |
""" | |
A transformer block with four layers: (1) self-attention of sparse | |
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp | |
block on sparse inputs, and (4) cross attention of dense inputs to sparse | |
inputs. | |
Arguments: | |
embedding_dim (int): the channel dimension of the embeddings | |
num_heads (int): the number of heads in the attention layers | |
mlp_dim (int): the hidden dimension of the mlp block | |
activation (nn.Module): the activation of the mlp block | |
skip_first_layer_pe (bool): skip the PE on the first layer | |
""" | |
super().__init__() | |
self.self_attn = Attention(embedding_dim, num_heads) | |
self.norm1 = nn.LayerNorm(embedding_dim) | |
self.cross_attn_token_to_image = Attention( | |
embedding_dim, num_heads, downsample_rate=attention_downsample_rate | |
) | |
self.norm2 = nn.LayerNorm(embedding_dim) | |
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) | |
self.norm3 = nn.LayerNorm(embedding_dim) | |
self.norm4 = nn.LayerNorm(embedding_dim) | |
self.cross_attn_image_to_token = Attention( | |
embedding_dim, num_heads, downsample_rate=attention_downsample_rate | |
) | |
self.skip_first_layer_pe = skip_first_layer_pe | |
def forward( | |
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor | |
) -> Tuple[Tensor, Tensor]: | |
# Self attention block | |
if self.skip_first_layer_pe: | |
queries = self.self_attn(q=queries, k=queries, v=queries) | |
else: | |
q = queries + query_pe | |
attn_out = self.self_attn(q=q, k=q, v=queries) | |
queries = queries + attn_out | |
queries = self.norm1(queries) | |
# Cross attention block, tokens attending to image embedding | |
q = queries + query_pe | |
k = keys + key_pe | |
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) | |
queries = queries + attn_out | |
queries = self.norm2(queries) | |
# MLP block | |
mlp_out = self.mlp(queries) | |
queries = queries + mlp_out | |
queries = self.norm3(queries) | |
# Cross attention block, image embedding attending to tokens | |
q = queries + query_pe | |
k = keys + key_pe | |
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) | |
keys = keys + attn_out | |
keys = self.norm4(keys) | |
return queries, keys | |
class Attention(nn.Module): | |
""" | |
An attention layer that allows for downscaling the size of the embedding | |
after projection to queries, keys, and values. | |
""" | |
def __init__( | |
self, | |
embedding_dim: int, | |
num_heads: int, | |
downsample_rate: int = 1, | |
) -> None: | |
super().__init__() | |
self.embedding_dim = embedding_dim | |
self.internal_dim = embedding_dim // downsample_rate | |
self.num_heads = num_heads | |
assert ( | |
self.internal_dim % num_heads == 0 | |
), "num_heads must divide embedding_dim." | |
self.q_proj = nn.Linear(embedding_dim, self.internal_dim) | |
self.k_proj = nn.Linear(embedding_dim, self.internal_dim) | |
self.v_proj = nn.Linear(embedding_dim, self.internal_dim) | |
self.out_proj = nn.Linear(self.internal_dim, embedding_dim) | |
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: | |
b, n, c = x.shape | |
x = x.reshape(b, n, num_heads, c // num_heads) | |
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head | |
def _recombine_heads(self, x: Tensor) -> Tensor: | |
b, n_heads, n_tokens, c_per_head = x.shape | |
x = x.transpose(1, 2) | |
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: | |
# Input projections | |
q = self.q_proj(q) | |
k = self.k_proj(k) | |
v = self.v_proj(v) | |
# Separate into heads | |
q = self._separate_heads(q, self.num_heads) | |
k = self._separate_heads(k, self.num_heads) | |
v = self._separate_heads(v, self.num_heads) | |
# Attention | |
_, _, _, c_per_head = q.shape | |
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens | |
attn = attn / math.sqrt(c_per_head) | |
attn = torch.softmax(attn, dim=-1) | |
# Get output | |
out = attn @ v | |
out = self._recombine_heads(out) | |
out = self.out_proj(out) | |
return out | |
class SegfaceMLP(nn.Module): | |
""" | |
Linear Embedding. | |
""" | |
def __init__(self, input_dim): | |
super().__init__() | |
self.proj = nn.Linear(input_dim, 256) | |
def forward(self, hidden_states: torch.Tensor): | |
hidden_states = hidden_states.flatten(2).transpose(1, 2) | |
hidden_states = self.proj(hidden_states) | |
return hidden_states | |
class SegFaceCeleb(nn.Module): | |
def __init__(self, input_resolution, model): | |
super(SegFaceCeleb, self).__init__() | |
self.input_resolution = input_resolution | |
self.model = model | |
if self.model == "convnext_base": | |
convnext = convnext_base(pretrained=False) | |
self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1])) | |
self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"] | |
self.multi_scale_features = [] | |
if self.model == "convnext_small": | |
convnext = convnext_small(pretrained=False) | |
self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1])) | |
self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"] | |
self.multi_scale_features = [] | |
if self.model == "convnext_tiny": | |
convnext = convnext_small(pretrained=False) | |
self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1])) | |
self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"] | |
self.multi_scale_features = [] | |
embed_dim = 1024 | |
out_chans = 256 | |
self.pe_layer = PositionEmbeddingRandom(out_chans // 2) | |
for name, module in self.backbone.named_modules(): | |
if name in self.target_layer_names: | |
module.register_forward_hook(self.save_features_hook(name)) | |
self.face_decoder = FaceDecoder( | |
transformer_dim=256, | |
transformer=TwoWayTransformer( | |
depth=2, | |
embedding_dim=256, | |
mlp_dim=2048, | |
num_heads=8, | |
), | |
) | |
num_encoder_blocks = 4 | |
if self.model in ["swin_base", "swinv2_base", "convnext_base"]: | |
hidden_sizes = [128, 256, 512, 1024] ### Swin Base and ConvNext Base | |
if self.model in ["resnet"]: | |
hidden_sizes = [256, 512, 1024, 2048] ### ResNet | |
if self.model in [ | |
"swinv2_small", | |
"swinv2_tiny", | |
"convnext_small", | |
"convnext_tiny", | |
]: | |
hidden_sizes = [ | |
96, | |
192, | |
384, | |
768, | |
] ### Swin Small/Tiny and ConvNext Small/Tiny | |
if self.model in ["mobilenet"]: | |
hidden_sizes = [24, 40, 112, 960] ### MobileNet | |
if self.model in ["efficientnet"]: | |
hidden_sizes = [48, 80, 176, 1280] ### EfficientNet | |
decoder_hidden_size = 256 | |
mlps = [] | |
for i in range(num_encoder_blocks): | |
mlp = SegfaceMLP(input_dim=hidden_sizes[i]) | |
mlps.append(mlp) | |
self.linear_c = nn.ModuleList(mlps) | |
# The following 3 layers implement the ConvModule of the original implementation | |
self.linear_fuse = nn.Conv2d( | |
in_channels=decoder_hidden_size * num_encoder_blocks, | |
out_channels=decoder_hidden_size, | |
kernel_size=1, | |
bias=False, | |
) | |
def save_features_hook(self, name): | |
def hook(module, input, output): | |
if self.model in [ | |
"swin_base", | |
"swinv2_base", | |
"swinv2_small", | |
"swinv2_tiny", | |
]: | |
self.multi_scale_features.append( | |
output.permute(0, 3, 1, 2).contiguous() | |
) ### Swin, Swinv2 | |
if self.model in [ | |
"convnext_base", | |
"convnext_small", | |
"convnext_tiny", | |
"mobilenet", | |
"efficientnet", | |
]: | |
self.multi_scale_features.append( | |
output | |
) ### ConvNext, ResNet, EfficientNet, MobileNet | |
return hook | |
def forward(self, x): | |
self.multi_scale_features.clear() | |
_, _, h, w = x.shape | |
features = self.backbone(x).squeeze() | |
batch_size = self.multi_scale_features[-1].shape[0] | |
all_hidden_states = () | |
for encoder_hidden_state, mlp in zip(self.multi_scale_features, self.linear_c): | |
height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3] | |
encoder_hidden_state = mlp(encoder_hidden_state) | |
encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1) | |
encoder_hidden_state = encoder_hidden_state.reshape( | |
batch_size, -1, height, width | |
) | |
# upsample | |
encoder_hidden_state = nn.functional.interpolate( | |
encoder_hidden_state, | |
size=self.multi_scale_features[0].size()[2:], | |
mode="bilinear", | |
align_corners=False, | |
) | |
all_hidden_states += (encoder_hidden_state,) | |
fused_states = self.linear_fuse( | |
torch.cat(all_hidden_states[::-1], dim=1) | |
) #### torch.Size([BS, 256, 128, 128]) | |
image_pe = self.pe_layer( | |
(fused_states.shape[2], fused_states.shape[3]) | |
).unsqueeze(0) | |
seg_output = self.face_decoder(image_embeddings=fused_states, image_pe=image_pe) | |
return seg_output | |
# 模型和配置初始化封装类 | |
class ImageGenerator: | |
def __init__(self): | |
self.args = self.get_args() | |
self.pipeline, self.moe_model = self.get_model(self.args) | |
with open(self.args.config_path, "r") as f: | |
self.model_config = yaml.safe_load(f)["model"] | |
self.farl = facer.face_parser( | |
"farl/celebm/448", | |
self.args.device, | |
model_path="https://github.com/FacePerceiver/facer/releases/download/models-v1/face_parsing.farl.celebm.main_ema_181500_jit.pt", | |
) | |
self.segface = SegFaceCeleb(512, "convnext_base").to(self.args.device) | |
checkpoint = torch.hub.load_state_dict_from_url("https://huggingface.co/kartiknarayan/SegFace/resolve/main/convnext_celeba_512/model_299.pt",map_location="cpu") | |
self.segface.load_state_dict(checkpoint["state_dict_backbone"]) | |
self.segface.eval() | |
self.segface_transforms = torchvision.transforms.Compose( | |
[ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
), | |
] | |
) | |
self.seg_face_remap_dict = { | |
0: 0, 1: 17, 2: 1, 3: 18, 4: 9, 5: 8, 6: 7, 7: 6, | |
8: 5, 9: 4, 10: 2, 11: 10, 12: 12, 13: 11, 14: 13, | |
15: 3, 16: 14, 17: 15, 18: 16, | |
} | |
self.palette = np.array( | |
[ | |
(0, 0, 0), (204, 0, 0), (76, 153, 0), (204, 204, 0), | |
(204, 0, 204), (51, 51, 255), (255, 204, 204), (0, 255, 255), | |
(255, 0, 0), (102, 51, 0), (102, 204, 0), (255, 255, 0), | |
(0, 0, 153), (0, 0, 204), (255, 51, 153), (0, 204, 204), | |
(0, 51, 0), (255, 153, 51), (0, 204, 0), | |
], | |
dtype=np.uint8, | |
) | |
self.org_labels = [ | |
"background", "face", "nose", "eyeg", "le", "re", "lb", "rb", | |
"lr", "rr", "imouth", "ulip", "llip", "hair", "hat", "earr", | |
"neck_l", "neck", "cloth", | |
] | |
self.new_labels = [ | |
"background", "neck", "face", "cloth", "rr", "lr", "rb", "lb", | |
"re", "le", "nose", "imouth", "llip", "ulip", "hair", "eyeg", | |
"hat", "earr", "neck_l", | |
] | |
def parse_face_with_farl(self, image): | |
image = image.resize((512, 512), Image.BICUBIC) | |
image_np = np.array(image) | |
image_pt = torch.tensor(image_np).to(self.args.device) | |
image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).float() | |
pred, _ = self.farl.net(image_pt / 255.0) | |
vis_seg_probs = pred.argmax(dim=1).detach().cpu().numpy()[0].astype(np.uint8) | |
remapped_mask = np.zeros_like(vis_seg_probs, dtype=np.uint8) | |
for i, pred_label in enumerate(self.new_labels): | |
if pred_label in self.org_labels: | |
remapped_mask[vis_seg_probs == i] = self.org_labels.index(pred_label) | |
vis_seg_probs = Image.fromarray(remapped_mask).convert("P") | |
vis_seg_probs.putpalette(self.palette.flatten()) | |
return vis_seg_probs | |
def parse_face_with_segface(self, image): | |
image = image.resize((512, 512), Image.BICUBIC) | |
image = self.segface_transforms(image) | |
logits = self.segface(image.unsqueeze(0).to(self.args.device)) | |
vis_seg_probs = logits.argmax(dim=1).detach().cpu().numpy()[0].astype(np.uint8) | |
new_mask = np.zeros_like(vis_seg_probs) | |
for old_idx, new_idx in self.seg_face_remap_dict.items(): | |
new_mask[vis_seg_probs == old_idx] = new_idx | |
vis_seg_probs = Image.fromarray(new_mask).convert("P") | |
vis_seg_probs.putpalette(self.palette.flatten()) | |
return vis_seg_probs | |
def get_args(self): | |
class Args: | |
pipe = "black-forest-labs/FLUX.1-schnell" | |
lora_ckpt = "weights" | |
moe_ckpt = "weights/mogle.pt" | |
pretrained_ckpt = "black-forest-labs/FLUX.1-schnell" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
size = 512 | |
seed = 42 | |
config_path = "config/Face-MoGLE.yaml" | |
return Args() | |
def get_model(self, args): | |
pipeline = FluxPipeline.from_pretrained( | |
args.pretrained_ckpt, torch_dtype=torch.bfloat16,use_auth_token=True # 这一行很关键 | |
) | |
pipeline.load_lora_weights(args.lora_ckpt, weight_name=f"pytorch_lora_weights.safetensors",) | |
pipeline.to(args.device) | |
moe_model = MoGLE() | |
moe_weight = torch.load(args.moe_ckpt, map_location="cpu") | |
moe_model.load_state_dict(moe_weight, strict=True) | |
moe_model = moe_model.to(device=args.device, dtype=torch.bfloat16) | |
moe_model.eval() | |
return pipeline, moe_model | |
def pack_data(self, mask_image: Image.Image): | |
mask = np.array(mask_image.convert("L")) | |
mask_list = [T.ToTensor()(mask_image.convert("RGB"))] | |
for i in range(19): | |
local_mask = np.zeros_like(mask) | |
local_mask[mask == i] = 255 | |
local_mask_tensor = T.ToTensor()(Image.fromarray(local_mask).convert("RGB")) | |
mask_list.append(local_mask_tensor) | |
condition_img = torch.stack(mask_list, dim=0) | |
return Condition(condition_type="depth", condition=condition_img, position_delta=[0, 0]) | |
def generate(self, prompt: str, mask_image: Image.Image, seed: int, num_inference_steps=28): | |
generator = torch.Generator().manual_seed(seed) | |
condition = self.pack_data(mask_image) | |
result = generate( | |
self.pipeline, | |
mogle=self.moe_model, | |
prompt=prompt, | |
conditions=[condition], | |
height=self.args.size, | |
width=self.args.size, | |
generator=generator, | |
model_config=self.model_config, | |
default_lora=True, | |
num_inference_steps=num_inference_steps | |
) | |
return result.images[0] | |
def pack_image(filename): | |
if filename is None: | |
return Image.new("P",size=(512, 512)) | |
print("这不是none.") | |
image = Image.open(filename) | |
return image | |
# 实例化生成器 | |
generator = ImageGenerator() | |
examples = [ | |
["", "assets/mask2face/handou_seg.png", None, "FaRL", 42, 28], | |
["", "assets/mask2face/black_seg.png", None, "FaRL", 42, 28], | |
["She has red hair", "assets/multimodal/liuyifei_seg.png", None, "FaRL", 42, 28], | |
["He is old", "assets/multimodal/musk_seg.png", None, "FaRL", 42, 28], | |
["Curly-haired woman with glasses", None, None, "FaRL", 42, 28], | |
["Man with beard and tie", None, None, "FaRL", 42, 28], | |
] | |
# examples = [ | |
# ["", pack_image("assets/mask2face/handou_seg.png"), None, "FaRL", 42, 28], | |
# ["", pack_image("assets/mask2face/black_seg.png"), None, "FaRL", 42, 28], | |
# ["She has red hair", pack_image("assets/multimodal/liuyifei_seg.png"), None, "FaRL", 42, 28], | |
# ["He is old", pack_image("assets/multimodal/musk_seg.png"), None, "FaRL", 42, 28], | |
# ["Curly-haired woman with glasses", pack_image(None), None, "FaRL", 42, 28], | |
# ["Man with beard and tie", pack_image(None), None, "FaRL", 42, 28], | |
# ] | |
# Gradio 界面(使用 Blocks) | |
with gr.Blocks(title="Controllable Face Generation with MoGLE") as demo: | |
gr.Markdown("<center><h1>Face-MoGLE: Mixture of Global and Local Experts with Diffusion Transformer for Controllable Face Generation</h1></center>") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Text Prompt", placeholder="Describe the face you'd like to generate...") | |
with gr.Row(): | |
with gr.Column(): | |
mask_image = gr.Image(type="pil", label="Semantic Mask (Optional)", tool="color-sketch", image_mode="P", interactive=True, height=512, width=512) | |
rgb_image = gr.Image(type="pil", label="Facial Image (Optional)") | |
model_choice = gr.Radio(["FaRL", "SegFace"], label="Face Parsing Model", value="FaRL") | |
seed = gr.Slider(minimum=0, maximum=100000, step=1, value=42, label="Random Seed") | |
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Sampling Step") | |
submit_btn = gr.Button("Generate") | |
with gr.Column(): | |
preview_mask = gr.Image(label="Parsed Semantic Mask (From the Facial Image)", interactive=False) | |
output_image = gr.Image(label="Generated Image") | |
def generate_wrapper(prompt, mask_image, rgb_image, model_choice, seed,num_inference_steps): | |
if mask_image is not None: | |
if isinstance(mask_image, Image.Image): | |
mask_image = mask_image.resize((512, 512), Image.BICUBIC) | |
if isinstance(mask_image, str): | |
mask_image = Image.open(mask_image).resize((512, 512), Image.BICUBIC) | |
if mask_image is None and rgb_image is not None: | |
if model_choice == "FaRL": | |
mask_image = generator.parse_face_with_farl(rgb_image) | |
else: | |
mask_image = generator.parse_face_with_segface(rgb_image) | |
elif mask_image is None and rgb_image is None: | |
# raise gr.Error("请上传至少一个:语义分割图 或 RGB 人脸图像。") | |
mask_image = Image.new("RGB", size=(512, 512)) | |
return mask_image, generator.generate(prompt, mask_image, seed,num_inference_steps) | |
submit_btn.click( | |
fn=generate_wrapper, | |
inputs=[prompt, mask_image, rgb_image, model_choice, seed,num_inference_steps], | |
outputs=[preview_mask, output_image] | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt, mask_image, rgb_image, model_choice, seed, num_inference_steps], | |
outputs=[preview_mask, output_image], | |
fn=generate_wrapper, | |
cache_examples=False, | |
label="Click any example below to try:" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |