face-mogle / app.py
XavierJiezou's picture
Update app.py
6213ca3 verified
import gradio as gr
from PIL import Image
import torch
import yaml
import numpy as np
from torchvision.models import convnext_base, convnext_small
from torch import nn as nn
import facer
from torch import Tensor
import math
from typing import Any, Optional, Tuple, Type
from torch.nn import functional as F
import torchvision
from torchvision import transforms as T
from src.flux.generate import generate
from diffusers.pipelines import FluxPipeline
from src.flux.condition import Condition
from src.moe.mogle import MoGLE
class LayerNorm2d(nn.Module):
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.sigmoid_output = sigmoid_output
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = F.sigmoid(x)
return x
class FaceDecoder(nn.Module):
def __init__(
self,
*,
transformer_dim: 256,
transformer: nn.Module,
activation: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.background_token = nn.Embedding(1, transformer_dim)
self.neck_token = nn.Embedding(1, transformer_dim)
self.face_token = nn.Embedding(1, transformer_dim)
self.cloth_token = nn.Embedding(1, transformer_dim)
self.rightear_token = nn.Embedding(1, transformer_dim)
self.leftear_token = nn.Embedding(1, transformer_dim)
self.rightbro_token = nn.Embedding(1, transformer_dim)
self.leftbro_token = nn.Embedding(1, transformer_dim)
self.righteye_token = nn.Embedding(1, transformer_dim)
self.lefteye_token = nn.Embedding(1, transformer_dim)
self.nose_token = nn.Embedding(1, transformer_dim)
self.innermouth_token = nn.Embedding(1, transformer_dim)
self.lowerlip_token = nn.Embedding(1, transformer_dim)
self.upperlip_token = nn.Embedding(1, transformer_dim)
self.hair_token = nn.Embedding(1, transformer_dim)
self.glass_token = nn.Embedding(1, transformer_dim)
self.hat_token = nn.Embedding(1, transformer_dim)
self.earring_token = nn.Embedding(1, transformer_dim)
self.necklace_token = nn.Embedding(1, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
),
activation(),
)
self.output_hypernetwork_mlps = MLP(
transformer_dim, transformer_dim, transformer_dim // 8, 3
)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
image_embeddings - torch.Size([1, 256, 128, 128])
image_pe - torch.Size([1, 256, 128, 128])
"""
output_tokens = torch.cat(
[
self.background_token.weight,
self.neck_token.weight,
self.face_token.weight,
self.cloth_token.weight,
self.rightear_token.weight,
self.leftear_token.weight,
self.rightbro_token.weight,
self.leftbro_token.weight,
self.righteye_token.weight,
self.lefteye_token.weight,
self.nose_token.weight,
self.innermouth_token.weight,
self.lowerlip_token.weight,
self.upperlip_token.weight,
self.hair_token.weight,
self.glass_token.weight,
self.hat_token.weight,
self.earring_token.weight,
self.necklace_token.weight,
],
dim=0,
)
tokens = output_tokens.unsqueeze(0).expand(
image_embeddings.size(0), -1, -1
) ##### torch.Size([4, 11, 256])
src = image_embeddings ##### torch.Size([4, 256, 128, 128])
pos_src = image_pe.expand(image_embeddings.size(0), -1, -1, -1)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(
src, pos_src, tokens
) ####### hs - torch.Size([BS, 11, 256]), src - torch.Size([BS, 16348, 256])
mask_token_out = hs[:, :, :]
src = src.transpose(1, 2).view(b, c, h, w) ##### torch.Size([4, 256, 128, 128])
upscaled_embedding = self.output_upscaling(
src
) ##### torch.Size([4, 32, 512, 512])
hyper_in = self.output_hypernetwork_mlps(
mask_token_out
) ##### torch.Size([1, 11, 32])
b, c, h, w = upscaled_embedding.shape
seg_output = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(
b, -1, h, w
) ##### torch.Size([1, 11, 512, 512])
return seg_output
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer(
"positional_encoding_gaussian_matrix",
scale * torch.randn((2, num_pos_feats)),
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1) # C x H x W
def forward_with_coords(
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using
queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape
B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must
have the same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
torch.Tensor: the processed point_embedding
torch.Tensor: the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class MLPBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lin2(self.act(self.lin1(x)))
class TwoWayAttentionBlock(nn.Module):
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]:
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""
An attention layer that allows for downscaling the size of the embedding
after projection to queries, keys, and values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert (
self.internal_dim % num_heads == 0
), "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out
class SegfaceMLP(nn.Module):
"""
Linear Embedding.
"""
def __init__(self, input_dim):
super().__init__()
self.proj = nn.Linear(input_dim, 256)
def forward(self, hidden_states: torch.Tensor):
hidden_states = hidden_states.flatten(2).transpose(1, 2)
hidden_states = self.proj(hidden_states)
return hidden_states
class SegFaceCeleb(nn.Module):
def __init__(self, input_resolution, model):
super(SegFaceCeleb, self).__init__()
self.input_resolution = input_resolution
self.model = model
if self.model == "convnext_base":
convnext = convnext_base(pretrained=False)
self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1]))
self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"]
self.multi_scale_features = []
if self.model == "convnext_small":
convnext = convnext_small(pretrained=False)
self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1]))
self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"]
self.multi_scale_features = []
if self.model == "convnext_tiny":
convnext = convnext_small(pretrained=False)
self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1]))
self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"]
self.multi_scale_features = []
embed_dim = 1024
out_chans = 256
self.pe_layer = PositionEmbeddingRandom(out_chans // 2)
for name, module in self.backbone.named_modules():
if name in self.target_layer_names:
module.register_forward_hook(self.save_features_hook(name))
self.face_decoder = FaceDecoder(
transformer_dim=256,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=256,
mlp_dim=2048,
num_heads=8,
),
)
num_encoder_blocks = 4
if self.model in ["swin_base", "swinv2_base", "convnext_base"]:
hidden_sizes = [128, 256, 512, 1024] ### Swin Base and ConvNext Base
if self.model in ["resnet"]:
hidden_sizes = [256, 512, 1024, 2048] ### ResNet
if self.model in [
"swinv2_small",
"swinv2_tiny",
"convnext_small",
"convnext_tiny",
]:
hidden_sizes = [
96,
192,
384,
768,
] ### Swin Small/Tiny and ConvNext Small/Tiny
if self.model in ["mobilenet"]:
hidden_sizes = [24, 40, 112, 960] ### MobileNet
if self.model in ["efficientnet"]:
hidden_sizes = [48, 80, 176, 1280] ### EfficientNet
decoder_hidden_size = 256
mlps = []
for i in range(num_encoder_blocks):
mlp = SegfaceMLP(input_dim=hidden_sizes[i])
mlps.append(mlp)
self.linear_c = nn.ModuleList(mlps)
# The following 3 layers implement the ConvModule of the original implementation
self.linear_fuse = nn.Conv2d(
in_channels=decoder_hidden_size * num_encoder_blocks,
out_channels=decoder_hidden_size,
kernel_size=1,
bias=False,
)
def save_features_hook(self, name):
def hook(module, input, output):
if self.model in [
"swin_base",
"swinv2_base",
"swinv2_small",
"swinv2_tiny",
]:
self.multi_scale_features.append(
output.permute(0, 3, 1, 2).contiguous()
) ### Swin, Swinv2
if self.model in [
"convnext_base",
"convnext_small",
"convnext_tiny",
"mobilenet",
"efficientnet",
]:
self.multi_scale_features.append(
output
) ### ConvNext, ResNet, EfficientNet, MobileNet
return hook
def forward(self, x):
self.multi_scale_features.clear()
_, _, h, w = x.shape
features = self.backbone(x).squeeze()
batch_size = self.multi_scale_features[-1].shape[0]
all_hidden_states = ()
for encoder_hidden_state, mlp in zip(self.multi_scale_features, self.linear_c):
height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3]
encoder_hidden_state = mlp(encoder_hidden_state)
encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1)
encoder_hidden_state = encoder_hidden_state.reshape(
batch_size, -1, height, width
)
# upsample
encoder_hidden_state = nn.functional.interpolate(
encoder_hidden_state,
size=self.multi_scale_features[0].size()[2:],
mode="bilinear",
align_corners=False,
)
all_hidden_states += (encoder_hidden_state,)
fused_states = self.linear_fuse(
torch.cat(all_hidden_states[::-1], dim=1)
) #### torch.Size([BS, 256, 128, 128])
image_pe = self.pe_layer(
(fused_states.shape[2], fused_states.shape[3])
).unsqueeze(0)
seg_output = self.face_decoder(image_embeddings=fused_states, image_pe=image_pe)
return seg_output
# 模型和配置初始化封装类
class ImageGenerator:
def __init__(self):
self.args = self.get_args()
self.pipeline, self.moe_model = self.get_model(self.args)
with open(self.args.config_path, "r") as f:
self.model_config = yaml.safe_load(f)["model"]
self.farl = facer.face_parser(
"farl/celebm/448",
self.args.device,
model_path="https://github.com/FacePerceiver/facer/releases/download/models-v1/face_parsing.farl.celebm.main_ema_181500_jit.pt",
)
self.segface = SegFaceCeleb(512, "convnext_base").to(self.args.device)
checkpoint = torch.hub.load_state_dict_from_url("https://huggingface.co/kartiknarayan/SegFace/resolve/main/convnext_celeba_512/model_299.pt",map_location="cpu")
self.segface.load_state_dict(checkpoint["state_dict_backbone"])
self.segface.eval()
self.segface_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
self.seg_face_remap_dict = {
0: 0, 1: 17, 2: 1, 3: 18, 4: 9, 5: 8, 6: 7, 7: 6,
8: 5, 9: 4, 10: 2, 11: 10, 12: 12, 13: 11, 14: 13,
15: 3, 16: 14, 17: 15, 18: 16,
}
self.palette = np.array(
[
(0, 0, 0), (204, 0, 0), (76, 153, 0), (204, 204, 0),
(204, 0, 204), (51, 51, 255), (255, 204, 204), (0, 255, 255),
(255, 0, 0), (102, 51, 0), (102, 204, 0), (255, 255, 0),
(0, 0, 153), (0, 0, 204), (255, 51, 153), (0, 204, 204),
(0, 51, 0), (255, 153, 51), (0, 204, 0),
],
dtype=np.uint8,
)
self.org_labels = [
"background", "face", "nose", "eyeg", "le", "re", "lb", "rb",
"lr", "rr", "imouth", "ulip", "llip", "hair", "hat", "earr",
"neck_l", "neck", "cloth",
]
self.new_labels = [
"background", "neck", "face", "cloth", "rr", "lr", "rb", "lb",
"re", "le", "nose", "imouth", "llip", "ulip", "hair", "eyeg",
"hat", "earr", "neck_l",
]
@torch.no_grad()
def parse_face_with_farl(self, image):
image = image.resize((512, 512), Image.BICUBIC)
image_np = np.array(image)
image_pt = torch.tensor(image_np).to(self.args.device)
image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).float()
pred, _ = self.farl.net(image_pt / 255.0)
vis_seg_probs = pred.argmax(dim=1).detach().cpu().numpy()[0].astype(np.uint8)
remapped_mask = np.zeros_like(vis_seg_probs, dtype=np.uint8)
for i, pred_label in enumerate(self.new_labels):
if pred_label in self.org_labels:
remapped_mask[vis_seg_probs == i] = self.org_labels.index(pred_label)
vis_seg_probs = Image.fromarray(remapped_mask).convert("P")
vis_seg_probs.putpalette(self.palette.flatten())
return vis_seg_probs
@torch.no_grad()
def parse_face_with_segface(self, image):
image = image.resize((512, 512), Image.BICUBIC)
image = self.segface_transforms(image)
logits = self.segface(image.unsqueeze(0).to(self.args.device))
vis_seg_probs = logits.argmax(dim=1).detach().cpu().numpy()[0].astype(np.uint8)
new_mask = np.zeros_like(vis_seg_probs)
for old_idx, new_idx in self.seg_face_remap_dict.items():
new_mask[vis_seg_probs == old_idx] = new_idx
vis_seg_probs = Image.fromarray(new_mask).convert("P")
vis_seg_probs.putpalette(self.palette.flatten())
return vis_seg_probs
def get_args(self):
class Args:
pipe = "black-forest-labs/FLUX.1-schnell"
lora_ckpt = "weights"
moe_ckpt = "weights/mogle.pt"
pretrained_ckpt = "black-forest-labs/FLUX.1-schnell"
device = "cuda" if torch.cuda.is_available() else "cpu"
size = 512
seed = 42
config_path = "config/Face-MoGLE.yaml"
return Args()
def get_model(self, args):
pipeline = FluxPipeline.from_pretrained(
args.pretrained_ckpt, torch_dtype=torch.bfloat16,use_auth_token=True # 这一行很关键
)
pipeline.load_lora_weights(args.lora_ckpt, weight_name=f"pytorch_lora_weights.safetensors",)
pipeline.to(args.device)
moe_model = MoGLE()
moe_weight = torch.load(args.moe_ckpt, map_location="cpu")
moe_model.load_state_dict(moe_weight, strict=True)
moe_model = moe_model.to(device=args.device, dtype=torch.bfloat16)
moe_model.eval()
return pipeline, moe_model
def pack_data(self, mask_image: Image.Image):
mask = np.array(mask_image.convert("L"))
mask_list = [T.ToTensor()(mask_image.convert("RGB"))]
for i in range(19):
local_mask = np.zeros_like(mask)
local_mask[mask == i] = 255
local_mask_tensor = T.ToTensor()(Image.fromarray(local_mask).convert("RGB"))
mask_list.append(local_mask_tensor)
condition_img = torch.stack(mask_list, dim=0)
return Condition(condition_type="depth", condition=condition_img, position_delta=[0, 0])
def generate(self, prompt: str, mask_image: Image.Image, seed: int, num_inference_steps=28):
generator = torch.Generator().manual_seed(seed)
condition = self.pack_data(mask_image)
result = generate(
self.pipeline,
mogle=self.moe_model,
prompt=prompt,
conditions=[condition],
height=self.args.size,
width=self.args.size,
generator=generator,
model_config=self.model_config,
default_lora=True,
num_inference_steps=num_inference_steps
)
return result.images[0]
def pack_image(filename):
if filename is None:
return Image.new("P",size=(512, 512))
print("这不是none.")
image = Image.open(filename)
return image
# 实例化生成器
generator = ImageGenerator()
examples = [
["", "assets/mask2face/handou_seg.png", None, "FaRL", 42, 28],
["", "assets/mask2face/black_seg.png", None, "FaRL", 42, 28],
["She has red hair", "assets/multimodal/liuyifei_seg.png", None, "FaRL", 42, 28],
["He is old", "assets/multimodal/musk_seg.png", None, "FaRL", 42, 28],
["Curly-haired woman with glasses", None, None, "FaRL", 42, 28],
["Man with beard and tie", None, None, "FaRL", 42, 28],
]
# examples = [
# ["", pack_image("assets/mask2face/handou_seg.png"), None, "FaRL", 42, 28],
# ["", pack_image("assets/mask2face/black_seg.png"), None, "FaRL", 42, 28],
# ["She has red hair", pack_image("assets/multimodal/liuyifei_seg.png"), None, "FaRL", 42, 28],
# ["He is old", pack_image("assets/multimodal/musk_seg.png"), None, "FaRL", 42, 28],
# ["Curly-haired woman with glasses", pack_image(None), None, "FaRL", 42, 28],
# ["Man with beard and tie", pack_image(None), None, "FaRL", 42, 28],
# ]
# Gradio 界面(使用 Blocks)
with gr.Blocks(title="Controllable Face Generation with MoGLE") as demo:
gr.Markdown("<center><h1>Face-MoGLE: Mixture of Global and Local Experts with Diffusion Transformer for Controllable Face Generation</h1></center>")
with gr.Row():
prompt = gr.Textbox(label="Text Prompt", placeholder="Describe the face you'd like to generate...")
with gr.Row():
with gr.Column():
mask_image = gr.Image(type="pil", label="Semantic Mask (Optional)", tool="color-sketch", image_mode="P", interactive=True, height=512, width=512)
rgb_image = gr.Image(type="pil", label="Facial Image (Optional)")
model_choice = gr.Radio(["FaRL", "SegFace"], label="Face Parsing Model", value="FaRL")
seed = gr.Slider(minimum=0, maximum=100000, step=1, value=42, label="Random Seed")
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Sampling Step")
submit_btn = gr.Button("Generate")
with gr.Column():
preview_mask = gr.Image(label="Parsed Semantic Mask (From the Facial Image)", interactive=False)
output_image = gr.Image(label="Generated Image")
def generate_wrapper(prompt, mask_image, rgb_image, model_choice, seed,num_inference_steps):
if mask_image is not None:
if isinstance(mask_image, Image.Image):
mask_image = mask_image.resize((512, 512), Image.BICUBIC)
if isinstance(mask_image, str):
mask_image = Image.open(mask_image).resize((512, 512), Image.BICUBIC)
if mask_image is None and rgb_image is not None:
if model_choice == "FaRL":
mask_image = generator.parse_face_with_farl(rgb_image)
else:
mask_image = generator.parse_face_with_segface(rgb_image)
elif mask_image is None and rgb_image is None:
# raise gr.Error("请上传至少一个:语义分割图 或 RGB 人脸图像。")
mask_image = Image.new("RGB", size=(512, 512))
return mask_image, generator.generate(prompt, mask_image, seed,num_inference_steps)
submit_btn.click(
fn=generate_wrapper,
inputs=[prompt, mask_image, rgb_image, model_choice, seed,num_inference_steps],
outputs=[preview_mask, output_image]
)
gr.Examples(
examples=examples,
inputs=[prompt, mask_image, rgb_image, model_choice, seed, num_inference_steps],
outputs=[preview_mask, output_image],
fn=generate_wrapper,
cache_examples=False,
label="Click any example below to try:"
)
if __name__ == "__main__":
demo.launch()