File size: 31,890 Bytes
48ed5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337046e
48ed5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec50c67
48ed5ae
 
41c83f6
48ed5ae
 
 
 
 
 
 
 
6666d79
48ed5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640d5c1
 
 
 
 
 
 
48ed5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640d5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ed5ae
 
640d5c1
48ed5ae
 
 
 
 
 
640d5c1
6213ca3
640d5c1
 
48ed5ae
 
 
 
 
 
640d5c1
 
48ed5ae
 
640d5c1
 
 
 
 
 
 
48ed5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640d5c1
 
 
 
 
 
 
 
48ed5ae
 
d27008c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
import gradio as gr
from PIL import Image
import torch
import yaml
import numpy as np
from torchvision.models import convnext_base, convnext_small
from torch import nn as nn
import facer
from torch import Tensor
import math
from typing import Any, Optional, Tuple, Type
from torch.nn import functional as F
import torchvision
from torchvision import transforms as T
from src.flux.generate import generate
from diffusers.pipelines import FluxPipeline
from src.flux.condition import Condition
from src.moe.mogle import MoGLE


class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x


class FaceDecoder(nn.Module):
    def __init__(
        self,
        *,
        transformer_dim: 256,
        transformer: nn.Module,
        activation: Type[nn.Module] = nn.GELU,
    ) -> None:

        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.background_token = nn.Embedding(1, transformer_dim)
        self.neck_token = nn.Embedding(1, transformer_dim)
        self.face_token = nn.Embedding(1, transformer_dim)
        self.cloth_token = nn.Embedding(1, transformer_dim)
        self.rightear_token = nn.Embedding(1, transformer_dim)
        self.leftear_token = nn.Embedding(1, transformer_dim)
        self.rightbro_token = nn.Embedding(1, transformer_dim)
        self.leftbro_token = nn.Embedding(1, transformer_dim)
        self.righteye_token = nn.Embedding(1, transformer_dim)
        self.lefteye_token = nn.Embedding(1, transformer_dim)
        self.nose_token = nn.Embedding(1, transformer_dim)
        self.innermouth_token = nn.Embedding(1, transformer_dim)
        self.lowerlip_token = nn.Embedding(1, transformer_dim)
        self.upperlip_token = nn.Embedding(1, transformer_dim)
        self.hair_token = nn.Embedding(1, transformer_dim)
        self.glass_token = nn.Embedding(1, transformer_dim)
        self.hat_token = nn.Embedding(1, transformer_dim)
        self.earring_token = nn.Embedding(1, transformer_dim)
        self.necklace_token = nn.Embedding(1, transformer_dim)

        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(
                transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
            ),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(
                transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
            ),
            activation(),
        )

        self.output_hypernetwork_mlps = MLP(
            transformer_dim, transformer_dim, transformer_dim // 8, 3
        )

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        image_embeddings - torch.Size([1, 256, 128, 128])
        image_pe - torch.Size([1, 256, 128, 128])
        """
        output_tokens = torch.cat(
            [
                self.background_token.weight,
                self.neck_token.weight,
                self.face_token.weight,
                self.cloth_token.weight,
                self.rightear_token.weight,
                self.leftear_token.weight,
                self.rightbro_token.weight,
                self.leftbro_token.weight,
                self.righteye_token.weight,
                self.lefteye_token.weight,
                self.nose_token.weight,
                self.innermouth_token.weight,
                self.lowerlip_token.weight,
                self.upperlip_token.weight,
                self.hair_token.weight,
                self.glass_token.weight,
                self.hat_token.weight,
                self.earring_token.weight,
                self.necklace_token.weight,
            ],
            dim=0,
        )

        tokens = output_tokens.unsqueeze(0).expand(
            image_embeddings.size(0), -1, -1
        )  ##### torch.Size([4, 11, 256])

        src = image_embeddings  ##### torch.Size([4, 256, 128, 128])
        pos_src = image_pe.expand(image_embeddings.size(0), -1, -1, -1)
        b, c, h, w = src.shape

        # Run the transformer
        hs, src = self.transformer(
            src, pos_src, tokens
        )  ####### hs - torch.Size([BS, 11, 256]), src - torch.Size([BS, 16348, 256])
        mask_token_out = hs[:, :, :]

        src = src.transpose(1, 2).view(b, c, h, w)  ##### torch.Size([4, 256, 128, 128])
        upscaled_embedding = self.output_upscaling(
            src
        )  ##### torch.Size([4, 32, 512, 512])
        hyper_in = self.output_hypernetwork_mlps(
            mask_token_out
        )  ##### torch.Size([1, 11, 32])
        b, c, h, w = upscaled_embedding.shape
        seg_output = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(
            b, -1, h, w
        )  ##### torch.Size([1, 11, 512, 512])

        return seg_output


class PositionEmbeddingRandom(nn.Module):
    """
    Positional encoding using random spatial frequencies.
    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer(
            "positional_encoding_gaussian_matrix",
            scale * torch.randn((2, num_pos_feats)),
        )

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Positionally encode points that are normalized to [0,1]."""
        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: Tuple[int, int]) -> torch.Tensor:
        """Generate positional encoding for a grid of the specified size."""
        h, w = size
        device: Any = self.positional_encoding_gaussian_matrix.device
        grid = torch.ones((h, w), device=device, dtype=torch.float32)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w

        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
        return pe.permute(2, 0, 1)  # C x H x W

    def forward_with_coords(
        self, coords_input: torch.Tensor, image_size: Tuple[int, int]
    ) -> torch.Tensor:
        """Positionally encode points that are not normalized to [0,1]."""
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        return self._pe_encoding(coords.to(torch.float))  # B x N x C


class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        """
        A transformer decoder that attends to an input image using
        queries whose positional embedding is supplied.

        Args:
          depth (int): number of layers in the transformer
          embedding_dim (int): the channel dimension for the input embeddings
          num_heads (int): the number of heads for multihead attention. Must
            divide embedding_dim
          mlp_dim (int): the channel dimension internal to the MLP block
          activation (nn.Module): the activation to use in the MLP block
        """
        super().__init__()
        self.depth = depth
        self.embedding_dim = embedding_dim
        self.num_heads = num_heads
        self.mlp_dim = mlp_dim
        self.layers = nn.ModuleList()

        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,
        image_pe: Tensor,
        point_embedding: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        """
        Args:
          image_embedding (torch.Tensor): image to attend to. Should be shape
            B x embedding_dim x h x w for any h and w.
          image_pe (torch.Tensor): the positional encoding to add to the image. Must
            have the same shape as image_embedding.
          point_embedding (torch.Tensor): the embedding to add to the query points.
            Must have shape B x N_points x embedding_dim for any N_points.

        Returns:
          torch.Tensor: the processed point_embedding
          torch.Tensor: the processed image_embedding
        """
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # Prepare queries
        queries = point_embedding
        keys = image_embedding

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding
        k = keys + image_pe
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)

        return queries, keys


class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))


class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        """
        A transformer block with four layers: (1) self-attention of sparse
        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
        block on sparse inputs, and (4) cross attention of dense inputs to sparse
        inputs.

        Arguments:
          embedding_dim (int): the channel dimension of the embeddings
          num_heads (int): the number of heads in the attention layers
          mlp_dim (int): the hidden dimension of the mlp block
          activation (nn.Module): the activation of the mlp block
          skip_first_layer_pe (bool): skip the PE on the first layer
        """
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )

        self.skip_first_layer_pe = skip_first_layer_pe

    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)

        return queries, keys


class Attention(nn.Module):
    """
    An attention layer that allows for downscaling the size of the embedding
    after projection to queries, keys, and values.
    """

    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        downsample_rate: int = 1,
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert (
            self.internal_dim % num_heads == 0
        ), "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ v
        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out


class SegfaceMLP(nn.Module):
    """
    Linear Embedding.
    """

    def __init__(self, input_dim):
        super().__init__()
        self.proj = nn.Linear(input_dim, 256)

    def forward(self, hidden_states: torch.Tensor):
        hidden_states = hidden_states.flatten(2).transpose(1, 2)
        hidden_states = self.proj(hidden_states)
        return hidden_states


class SegFaceCeleb(nn.Module):
    def __init__(self, input_resolution, model):
        super(SegFaceCeleb, self).__init__()
        self.input_resolution = input_resolution
        self.model = model

        if self.model == "convnext_base":
            convnext = convnext_base(pretrained=False)
            self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1]))
            self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"]
            self.multi_scale_features = []

        if self.model == "convnext_small":
            convnext = convnext_small(pretrained=False)
            self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1]))
            self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"]
            self.multi_scale_features = []

        if self.model == "convnext_tiny":
            convnext = convnext_small(pretrained=False)
            self.backbone = torch.nn.Sequential(*(list(convnext.children())[:-1]))
            self.target_layer_names = ["0.1", "0.3", "0.5", "0.7"]
            self.multi_scale_features = []

        embed_dim = 1024
        out_chans = 256

        self.pe_layer = PositionEmbeddingRandom(out_chans // 2)

        for name, module in self.backbone.named_modules():
            if name in self.target_layer_names:
                module.register_forward_hook(self.save_features_hook(name))

        self.face_decoder = FaceDecoder(
            transformer_dim=256,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=256,
                mlp_dim=2048,
                num_heads=8,
            ),
        )

        num_encoder_blocks = 4
        if self.model in ["swin_base", "swinv2_base", "convnext_base"]:
            hidden_sizes = [128, 256, 512, 1024]  ### Swin Base and ConvNext Base
        if self.model in ["resnet"]:
            hidden_sizes = [256, 512, 1024, 2048]  ### ResNet
        if self.model in [
            "swinv2_small",
            "swinv2_tiny",
            "convnext_small",
            "convnext_tiny",
        ]:
            hidden_sizes = [
                96,
                192,
                384,
                768,
            ]  ### Swin Small/Tiny and ConvNext Small/Tiny
        if self.model in ["mobilenet"]:
            hidden_sizes = [24, 40, 112, 960]  ### MobileNet
        if self.model in ["efficientnet"]:
            hidden_sizes = [48, 80, 176, 1280]  ### EfficientNet
        decoder_hidden_size = 256

        mlps = []
        for i in range(num_encoder_blocks):
            mlp = SegfaceMLP(input_dim=hidden_sizes[i])
            mlps.append(mlp)
        self.linear_c = nn.ModuleList(mlps)

        # The following 3 layers implement the ConvModule of the original implementation
        self.linear_fuse = nn.Conv2d(
            in_channels=decoder_hidden_size * num_encoder_blocks,
            out_channels=decoder_hidden_size,
            kernel_size=1,
            bias=False,
        )

    def save_features_hook(self, name):
        def hook(module, input, output):
            if self.model in [
                "swin_base",
                "swinv2_base",
                "swinv2_small",
                "swinv2_tiny",
            ]:
                self.multi_scale_features.append(
                    output.permute(0, 3, 1, 2).contiguous()
                )  ### Swin, Swinv2
            if self.model in [
                "convnext_base",
                "convnext_small",
                "convnext_tiny",
                "mobilenet",
                "efficientnet",
            ]:
                self.multi_scale_features.append(
                    output
                )  ### ConvNext, ResNet, EfficientNet, MobileNet

        return hook

    def forward(self, x):
        self.multi_scale_features.clear()

        _, _, h, w = x.shape
        features = self.backbone(x).squeeze()

        batch_size = self.multi_scale_features[-1].shape[0]
        all_hidden_states = ()
        for encoder_hidden_state, mlp in zip(self.multi_scale_features, self.linear_c):
            height, width = encoder_hidden_state.shape[2], encoder_hidden_state.shape[3]
            encoder_hidden_state = mlp(encoder_hidden_state)
            encoder_hidden_state = encoder_hidden_state.permute(0, 2, 1)
            encoder_hidden_state = encoder_hidden_state.reshape(
                batch_size, -1, height, width
            )
            # upsample
            encoder_hidden_state = nn.functional.interpolate(
                encoder_hidden_state,
                size=self.multi_scale_features[0].size()[2:],
                mode="bilinear",
                align_corners=False,
            )
            all_hidden_states += (encoder_hidden_state,)

        fused_states = self.linear_fuse(
            torch.cat(all_hidden_states[::-1], dim=1)
        )  #### torch.Size([BS, 256, 128, 128])
        image_pe = self.pe_layer(
            (fused_states.shape[2], fused_states.shape[3])
        ).unsqueeze(0)
        seg_output = self.face_decoder(image_embeddings=fused_states, image_pe=image_pe)

        return seg_output


# 模型和配置初始化封装类
class ImageGenerator:
    def __init__(self):
        self.args = self.get_args()
        self.pipeline, self.moe_model = self.get_model(self.args)
        with open(self.args.config_path, "r") as f:
            self.model_config = yaml.safe_load(f)["model"]
        self.farl = facer.face_parser(
            "farl/celebm/448",
            self.args.device,
            model_path="https://github.com/FacePerceiver/facer/releases/download/models-v1/face_parsing.farl.celebm.main_ema_181500_jit.pt",
        )
        self.segface = SegFaceCeleb(512, "convnext_base").to(self.args.device)
        checkpoint = torch.hub.load_state_dict_from_url("https://huggingface.co/kartiknarayan/SegFace/resolve/main/convnext_celeba_512/model_299.pt",map_location="cpu")
        self.segface.load_state_dict(checkpoint["state_dict_backbone"])
        self.segface.eval()
        self.segface_transforms = torchvision.transforms.Compose(
            [
                torchvision.transforms.ToTensor(),
                torchvision.transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        )

        self.seg_face_remap_dict = {
            0: 0, 1: 17, 2: 1, 3: 18, 4: 9, 5: 8, 6: 7, 7: 6,
            8: 5, 9: 4, 10: 2, 11: 10, 12: 12, 13: 11, 14: 13,
            15: 3, 16: 14, 17: 15, 18: 16,
        }

        self.palette = np.array(
            [
                (0, 0, 0), (204, 0, 0), (76, 153, 0), (204, 204, 0),
                (204, 0, 204), (51, 51, 255), (255, 204, 204), (0, 255, 255),
                (255, 0, 0), (102, 51, 0), (102, 204, 0), (255, 255, 0),
                (0, 0, 153), (0, 0, 204), (255, 51, 153), (0, 204, 204),
                (0, 51, 0), (255, 153, 51), (0, 204, 0),
            ],
            dtype=np.uint8,
        )

        self.org_labels = [
            "background", "face", "nose", "eyeg", "le", "re", "lb", "rb",
            "lr", "rr", "imouth", "ulip", "llip", "hair", "hat", "earr",
            "neck_l", "neck", "cloth",
        ]

        self.new_labels = [
            "background", "neck", "face", "cloth", "rr", "lr", "rb", "lb",
            "re", "le", "nose", "imouth", "llip", "ulip", "hair", "eyeg",
            "hat", "earr", "neck_l",
        ]

    @torch.no_grad()
    def parse_face_with_farl(self, image):
        image = image.resize((512, 512), Image.BICUBIC)
        image_np = np.array(image)
        image_pt = torch.tensor(image_np).to(self.args.device)
        image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).float()
        pred, _ = self.farl.net(image_pt / 255.0)
        vis_seg_probs = pred.argmax(dim=1).detach().cpu().numpy()[0].astype(np.uint8)
        remapped_mask = np.zeros_like(vis_seg_probs, dtype=np.uint8)
        for i, pred_label in enumerate(self.new_labels):
            if pred_label in self.org_labels:
                remapped_mask[vis_seg_probs == i] = self.org_labels.index(pred_label)
        vis_seg_probs = Image.fromarray(remapped_mask).convert("P")
        vis_seg_probs.putpalette(self.palette.flatten())
        return vis_seg_probs

    @torch.no_grad()
    def parse_face_with_segface(self, image):
        image = image.resize((512, 512), Image.BICUBIC)
        image = self.segface_transforms(image)
        logits = self.segface(image.unsqueeze(0).to(self.args.device))
        vis_seg_probs = logits.argmax(dim=1).detach().cpu().numpy()[0].astype(np.uint8)
        new_mask = np.zeros_like(vis_seg_probs)
        for old_idx, new_idx in self.seg_face_remap_dict.items():
            new_mask[vis_seg_probs == old_idx] = new_idx
        vis_seg_probs = Image.fromarray(new_mask).convert("P")
        vis_seg_probs.putpalette(self.palette.flatten())
        return vis_seg_probs

    def get_args(self):
        class Args:
            pipe = "black-forest-labs/FLUX.1-schnell"
            lora_ckpt = "weights"
            moe_ckpt = "weights/mogle.pt"
            pretrained_ckpt = "black-forest-labs/FLUX.1-schnell"
            device = "cuda" if torch.cuda.is_available() else "cpu"
            size = 512
            seed = 42
            config_path = "config/Face-MoGLE.yaml"
        return Args()

    def get_model(self, args):
        pipeline = FluxPipeline.from_pretrained(
            args.pretrained_ckpt, torch_dtype=torch.bfloat16,use_auth_token=True  # 这一行很关键
        )
        pipeline.load_lora_weights(args.lora_ckpt, weight_name=f"pytorch_lora_weights.safetensors",)
        pipeline.to(args.device)
        moe_model = MoGLE()
        moe_weight = torch.load(args.moe_ckpt, map_location="cpu")
        moe_model.load_state_dict(moe_weight, strict=True)
        moe_model = moe_model.to(device=args.device, dtype=torch.bfloat16)
        moe_model.eval()
        return pipeline, moe_model

    def pack_data(self, mask_image: Image.Image):
        mask = np.array(mask_image.convert("L"))
        mask_list = [T.ToTensor()(mask_image.convert("RGB"))]
        for i in range(19):
            local_mask = np.zeros_like(mask)
            local_mask[mask == i] = 255
            local_mask_tensor = T.ToTensor()(Image.fromarray(local_mask).convert("RGB"))
            mask_list.append(local_mask_tensor)
        condition_img = torch.stack(mask_list, dim=0)
        return Condition(condition_type="depth", condition=condition_img, position_delta=[0, 0])

    def generate(self, prompt: str, mask_image: Image.Image, seed: int, num_inference_steps=28):
        generator = torch.Generator().manual_seed(seed)
        condition = self.pack_data(mask_image)
        result = generate(
            self.pipeline,
            mogle=self.moe_model,
            prompt=prompt,
            conditions=[condition],
            height=self.args.size,
            width=self.args.size,
            generator=generator,
            model_config=self.model_config,
            default_lora=True,
            num_inference_steps=num_inference_steps
        )
        return result.images[0]


def pack_image(filename):
    if filename is None:
        return Image.new("P",size=(512, 512))
    print("这不是none.")
    image = Image.open(filename)
    return image

# 实例化生成器
generator = ImageGenerator()

examples = [

["", "assets/mask2face/handou_seg.png", None, "FaRL", 42, 28],

["", "assets/mask2face/black_seg.png", None, "FaRL", 42, 28],

["She has red hair", "assets/multimodal/liuyifei_seg.png", None, "FaRL", 42, 28],

["He is old", "assets/multimodal/musk_seg.png", None, "FaRL", 42, 28],

["Curly-haired woman with glasses", None, None, "FaRL", 42, 28],

["Man with beard and tie", None, None, "FaRL", 42, 28],

]

# examples = [

# ["", pack_image("assets/mask2face/handou_seg.png"), None, "FaRL", 42, 28],

# ["", pack_image("assets/mask2face/black_seg.png"), None, "FaRL", 42, 28],

# ["She has red hair", pack_image("assets/multimodal/liuyifei_seg.png"), None, "FaRL", 42, 28],

# ["He is old", pack_image("assets/multimodal/musk_seg.png"), None, "FaRL", 42, 28],

# ["Curly-haired woman with glasses", pack_image(None), None, "FaRL", 42, 28],

# ["Man with beard and tie", pack_image(None), None, "FaRL", 42, 28],

# ]


# Gradio 界面(使用 Blocks)
with gr.Blocks(title="Controllable Face Generation with MoGLE") as demo:
    gr.Markdown("<center><h1>Face-MoGLE: Mixture of Global and Local Experts with Diffusion Transformer for Controllable Face Generation</h1></center>")

    with gr.Row():
        prompt = gr.Textbox(label="Text Prompt", placeholder="Describe the face you'd like to generate...")

    with gr.Row():
        with gr.Column():
            
            mask_image = gr.Image(type="pil", label="Semantic Mask (Optional)", tool="color-sketch", image_mode="P", interactive=True, height=512, width=512)

            rgb_image = gr.Image(type="pil", label="Facial Image (Optional)")
            model_choice = gr.Radio(["FaRL", "SegFace"], label="Face Parsing Model", value="FaRL")
            seed = gr.Slider(minimum=0, maximum=100000, step=1, value=42, label="Random Seed")
            num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=28, label="Sampling Step")
            submit_btn = gr.Button("Generate")

        with gr.Column():
            preview_mask = gr.Image(label="Parsed Semantic Mask (From the Facial Image)", interactive=False)
            output_image = gr.Image(label="Generated Image")

    def generate_wrapper(prompt, mask_image, rgb_image, model_choice, seed,num_inference_steps):

        if mask_image is not None:
            if isinstance(mask_image, Image.Image):
                mask_image = mask_image.resize((512, 512), Image.BICUBIC)
            if isinstance(mask_image, str):
                mask_image = Image.open(mask_image).resize((512, 512), Image.BICUBIC)

        if mask_image is None and rgb_image is not None:
            if model_choice == "FaRL":
                mask_image = generator.parse_face_with_farl(rgb_image)
            else:
                mask_image = generator.parse_face_with_segface(rgb_image)
        elif mask_image is None and rgb_image is None:
            # raise gr.Error("请上传至少一个:语义分割图 或 RGB 人脸图像。")
            mask_image = Image.new("RGB", size=(512, 512))
        return mask_image, generator.generate(prompt, mask_image, seed,num_inference_steps)

    submit_btn.click(
        fn=generate_wrapper,
        inputs=[prompt, mask_image, rgb_image, model_choice, seed,num_inference_steps],
        outputs=[preview_mask, output_image]
    )
    gr.Examples(
    examples=examples,
    inputs=[prompt, mask_image, rgb_image, model_choice, seed, num_inference_steps],
    outputs=[preview_mask, output_image],
    fn=generate_wrapper,
    cache_examples=False,
    label="Click any example below to try:"
 )


if __name__ == "__main__":
    demo.launch()