|
# DensePose CSE and DensePose Evolution |
|
|
|
* [DensePose Evolution pipeline](DENSEPOSE_IUV.md#ModelZooBootstrap), a framework to bootstrap |
|
DensePose on unlabeled data |
|
* [`InferenceBasedLoader`](../densepose/data/inference_based_loader.py) |
|
with data samplers to use inference results from one model |
|
to train another model (bootstrap); |
|
* [`VideoKeyframeDataset`](../densepose/data/video/video_keyframe_dataset.py) |
|
to efficiently load images from video keyframes; |
|
* Category maps and filters to combine annotations from different categories |
|
and train in a class-agnostic manner; |
|
* [Pretrained models](DENSEPOSE_IUV.md#ModelZooBootstrap) for DensePose estimation on chimpanzees; |
|
* DensePose head training from partial data (segmentation only); |
|
* [DensePose models with mask confidence estimation](DENSEPOSE_IUV.md#ModelZooMaskConfidence); |
|
* [DensePose Chimps]() dataset for IUV evaluation |
|
* [DensePose Continuous Surface Embeddings](DENSEPOSE_CSE.md), a framework to extend DensePose |
|
to various categories using 3D models |
|
* [Hard embedding](../densepose/modeling/losses/embed.py) and |
|
[soft embedding](../densepose/modeling/losses/soft_embed.py) |
|
losses to train universal positional embeddings; |
|
* [Embedder](../(densepose/modeling/cse/embedder.py) to handle |
|
mesh vertex embeddings; |
|
* [Storage](../densepose/evaluation/tensor_storage.py) for evaluation with high volumes of data; |
|
* [Pretrained models](DENSEPOSE_CSE.md#ModelZoo) for DensePose CSE estimation on humans and animals; |
|
* [DensePose Chimps](DENSEPOSE_DATASETS.md#densepose-chimps) and |
|
[DensePose LVIS](DENSEPOSE_DATASETS.md#densepose-lvis) datasets for CSE finetuning and evaluation; |
|
* [Vertex and texture mapping visualizers](../densepose/vis/densepose_outputs_vertex.py); |
|
* Refactoring of all major components: losses, predictors, model outputs, model results, visualizers; |
|
* Dedicated structures for [chart outputs](../densepose/structures/chart.py), |
|
[chart outputs with confidences](../densepose/structures/chart_confidence.py), |
|
[chart results](../densepose/structures/chart_result.py), |
|
[CSE outputs](../densepose/structures/cse.py); |
|
* Dedicated predictors for |
|
[chart-based estimation](../densepose/modeling/predictors/chart.py), |
|
[confidence estimation](../densepose/modeling/predictors/chart_confidence.py) |
|
and [CSE estimation](../densepose/modeling/predictors/cse.py); |
|
* Generic handling of various [conversions](../densepose/converters) (e.g. from outputs to results); |
|
* Better organization of various [losses](../densepose/modeling/losses); |
|
* Segregation of loss data accumulators for |
|
[IUV setting](../densepose/modeling/losses/utils.py) |
|
and [CSE setting](../densepose/modeling/losses/embed_utils.py); |
|
* Splitting visualizers into separate modules; |
|
* [HRNet](../densepose/modeling/hrnet.py) and [HRFPN](../densepose/modeling/hrfpn.py) backbones; |
|
* [PoseTrack](DENSEPOSE_DATASETS.md#densepose-posetrack) dataset; |
|
* [IUV texture visualizer](../densepose/vis/densepose_results_textures.py) |
|
|