|
# MViTv2: Improved Multiscale Vision Transformers for Classification and Detection |
|
|
|
Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer* |
|
|
|
[[`arXiv`](https://arxiv.org/abs/2112.01526)] [[`BibTeX`](#CitingMViTv2)] |
|
|
|
In this repository, we provide detection configs and models for MViTv2 (CVPR 2022) in Detectron2. For image classification tasks, please refer to [MViTv2 repo](https://github.com/facebookresearch/mvit). |
|
|
|
## Results and Pretrained Models |
|
|
|
### COCO |
|
|
|
<table><tbody> |
|
<!-- START TABLE --> |
|
<!-- TABLE HEADER --> |
|
<th valign="bottom">Name</th> |
|
<th valign="bottom">pre-train</th> |
|
<th valign="bottom">Method</th> |
|
<th valign="bottom">epochs</th> |
|
<th valign="bottom">box<br/>AP</th> |
|
<th valign="bottom">mask<br/>AP</th> |
|
<th valign="bottom">#params</th> |
|
<th valign="bottom">FLOPS</th> |
|
<th valign="bottom">model id</th> |
|
<th valign="bottom">download</th> |
|
<!-- TABLE BODY --> |
|
<!-- ROW: mask_rcnn_mvitv2_t_3x --> |
|
<tr><td align="left"><a href="configs/mask_rcnn_mvitv2_t_3x.py">MViTV2-T</a></td> |
|
<td align="center">IN1K</td> |
|
<td align="center">Mask R-CNN</td> |
|
<td align="center">36</td> |
|
<td align="center">48.3</td> |
|
<td align="center">43.8</td> |
|
<td align="center">44M</td> |
|
<td align="center">279G</td> |
|
<td align="center">307611773</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/mask_rcnn_mvitv2_t_3x/f307611773/model_final_1a1c30.pkl">model</a></td> |
|
</tr> |
|
<!-- ROW: cascade_mask_rcnn_mvitv2_t_3x --> |
|
<tr><td align="left"><a href="configs/cascade_mask_rcnn_mvitv2_t_3x.py">MViTV2-T</a></td> |
|
<td align="center">IN1K</td> |
|
<td align="center">Cascade Mask R-CNN</td> |
|
<td align="center">36</td> |
|
<td align="center">52.2</td> |
|
<td align="center">45.0</td> |
|
<td align="center">76M</td> |
|
<td align="center">701G</td> |
|
<td align="center">308344828</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/cascade_mask_rcnn_mvitv2_t_3x/f308344828/model_final_c6967a.pkl">model</a></td> |
|
</tr> |
|
<!-- ROW: cascade_mask_rcnn_mvitv2_s_3x --> |
|
<tr><td align="left"><a href="configs/cascade_mask_rcnn_mvitv2_s_3x.py">MViTV2-S</a></td> |
|
<td align="center">IN1K</td> |
|
<td align="center">Cascade Mask R-CNN</td> |
|
<td align="center">36</td> |
|
<td align="center">53.2</td> |
|
<td align="center">46.0</td> |
|
<td align="center">87M</td> |
|
<td align="center">748G</td> |
|
<td align="center">308344647</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/cascade_mask_rcnn_mvitv2_s_3x/f308344647/model_final_279baf.pkl">model</a></td> |
|
</tr> |
|
<!-- ROW: cascade_mask_rcnn_mvitv2_b_3x --> |
|
<tr><td align="left"><a href="configs/cascade_mask_rcnn_mvitv2_b_3x.py">MViTV2-B</a></td> |
|
<td align="center">IN1K</td> |
|
<td align="center">Cascade Mask R-CNN</td> |
|
<td align="center">36</td> |
|
<td align="center">54.1</td> |
|
<td align="center">46.7</td> |
|
<td align="center">103M</td> |
|
<td align="center">814G</td> |
|
<td align="center">308109448</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/cascade_mask_rcnn_mvitv2_b_3x/f308109448/model_final_421a91.pkl">model</a></td> |
|
</tr> |
|
<!-- ROW: cascade_mask_rcnn_mvitv2_b_in21k_3x --> |
|
<tr><td align="left"><a href="configs/cascade_mask_rcnn_mvitv2_b_in21k_3x.py">MViTV2-B</a></td> |
|
<td align="center">IN21K</td> |
|
<td align="center">Cascade Mask R-CNN</td> |
|
<td align="center">36</td> |
|
<td align="center">54.9</td> |
|
<td align="center">47.4</td> |
|
<td align="center">103M</td> |
|
<td align="center">814G</td> |
|
<td align="center">309003202</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/cascade_mask_rcnn_mvitv2_b_in12k_3x/f309003202/model_final_be5168.pkl">model</a></td> |
|
</tr> |
|
<!-- ROW: cascade_mask_rcnn_mvitv2_l_in21k_lsj_50ep --> |
|
<tr><td align="left"><a href="configs/cascade_mask_rcnn_mvitv2_l_in21k_lsj_50ep.py">MViTV2-L</a></td> |
|
<td align="center">IN21K</td> |
|
<td align="center">Cascade Mask R-CNN</td> |
|
<td align="center">50</td> |
|
<td align="center">55.8</td> |
|
<td align="center">48.3</td> |
|
<td align="center">270M</td> |
|
<td align="center">1519G</td> |
|
<td align="center">308099658</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/cascade_mask_rcnn_mvitv2_l_in12k_lsj_50ep/f308099658/model_final_c41c5a.pkl">model</a></td> |
|
</tr> |
|
<!-- ROW: cascade_mask_rcnn_mvitv2_h_in21k_lsj_3x --> |
|
<tr><td align="left"><a href="configs/cascade_mask_rcnn_mvitv2_h_in21k_lsj_3x.py">MViTV2-H</a></td> |
|
<td align="center">IN21K</td> |
|
<td align="center">Cascade Mask R-CNN</td> |
|
<td align="center">36</td> |
|
<td align="center">56.1</td> |
|
<td align="center">48.5</td> |
|
<td align="center">718M</td> |
|
<td align="center">3084G</td> |
|
<td align="center">309013744</td> |
|
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/MViTv2/cascade_mask_rcnn_mvitv2_h_in12k_lsj_3x/f309013744/model_final_30d36b.pkl">model</a></td> |
|
</tr> |
|
</tbody></table> |
|
|
|
Note that the above models were trained and measured on 8-node with 64 NVIDIA A100 GPUs in total. The ImageNet pre-trained model weights are obtained from [MViTv2 repo](https://github.com/facebookresearch/mvit). |
|
|
|
## Training |
|
All configs can be trained with: |
|
|
|
``` |
|
../../tools/lazyconfig_train_net.py --config-file configs/path/to/config.py |
|
``` |
|
By default, we use 64 GPUs with batch size as 64 for training. |
|
|
|
## Evaluation |
|
Model evaluation can be done similarly: |
|
``` |
|
../../tools/lazyconfig_train_net.py --config-file configs/path/to/config.py --eval-only train.init_checkpoint=/path/to/model_checkpoint |
|
``` |
|
|
|
|
|
|
|
## <a name="CitingMViTv2"></a>Citing MViTv2 |
|
|
|
If you use MViTv2, please use the following BibTeX entry. |
|
|
|
```BibTeX |
|
@inproceedings{li2021improved, |
|
title={MViTv2: Improved multiscale vision transformers for classification and detection}, |
|
author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph}, |
|
booktitle={CVPR}, |
|
year={2022} |
|
} |
|
``` |
|
|