demo-mcp / app.py
VirtualOasis's picture
Update app.py
a5510cb verified
raw
history blame
17.4 kB
import gradio as gr
import os
import json
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from huggingface_hub import InferenceClient
import re
from urllib.parse import urlparse
import warnings
# Configure matplotlib for better font handling
plt.rcParams['font.family'] = ['DejaVu Sans']
plt.rcParams['font.size'] = 10
plt.rcParams['font.weight'] = 'normal'
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', message='.*Font family.*not found.*')
def clean_text_for_display(text):
"""Clean text to remove characters that might cause font issues."""
if not isinstance(text, str):
return str(text)
# Remove or replace problematic characters
text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters
text = re.sub(r'\s+', ' ', text).strip() # Normalize whitespace
return text[:50] if len(text) > 50 else text # Limit length for display
def fetch_content(url_or_text):
"""Fetch content from URL or return text directly.
Args:
url_or_text: Either a URL to fetch content from, or direct text input
Returns:
Extracted text content
"""
try:
# Check if input looks like a URL
parsed = urlparse(url_or_text)
if parsed.scheme in ['http', 'https']:
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url_or_text, headers=headers, timeout=10)
response.raise_for_status()
# Parse HTML and extract text
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text and clean it up
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:5000] # Limit to first 5000 characters
except Exception as e:
return f"Error fetching URL: {str(e)}"
else:
# It's direct text input
return url_or_text
except Exception as e:
return f"Error processing input: {str(e)}"
def simple_entity_extraction(text):
"""Fallback entity extraction when AI is not available."""
try:
words = text.split()
entities = []
# Simple heuristic: words that are capitalized and longer than 2 characters
seen = set()
for word in words[:30]: # Limit to first 30 words
clean_word = re.sub(r'[^\w]', '', word)
if (clean_word.istitle() and len(clean_word) > 2 and
clean_word.lower() not in seen and
clean_word not in ['The', 'This', 'That', 'When', 'Where', 'How']):
entities.append({
"name": clean_text_for_display(clean_word),
"type": "CONCEPT",
"description": "Auto-detected entity"
})
seen.add(clean_word.lower())
# Create some basic relationships
relationships = []
if len(entities) > 1:
for i in range(min(len(entities) - 1, 5)): # Max 5 relationships
relationships.append({
"source": entities[i]["name"],
"target": entities[i + 1]["name"],
"relation": "related_to",
"description": "Sequential relationship"
})
return {"entities": entities[:10], "relationships": relationships}
except Exception as e:
return {
"entities": [{"name": "Error", "type": "ERROR", "description": str(e)}],
"relationships": []
}
def extract_entities(text):
"""Extract entities and relationships using Mistral AI with fallback.
Args:
text: Input text to analyze
Returns:
Dictionary containing entities and relationships
"""
try:
# Check if HF_TOKEN is available
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
print("No HF_TOKEN found, using simple extraction")
return simple_entity_extraction(text)
client = InferenceClient(
provider="together",
api_key=hf_token,
)
prompt = f"""
Analyze the following text and extract:
1. Named entities (people, organizations, locations, concepts)
2. Relationships between these entities
Return ONLY a valid JSON object with this structure:
{{
"entities": [
{{"name": "entity_name", "type": "PERSON", "description": "brief description"}}
],
"relationships": [
{{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
]
}}
Text to analyze: {text[:1500]}
"""
completion = client.chat.completions.create(
model="mistralai/Mistral-Small-24B-Instruct-2501",
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=0.1,
)
response_text = completion.choices[0].message.content
# Clean and extract JSON
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
json_str = json_match.group()
# Clean the JSON string
json_str = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', json_str) # Remove control characters
parsed_data = json.loads(json_str)
# Clean entity names for display
if "entities" in parsed_data:
for entity in parsed_data["entities"]:
if "name" in entity:
entity["name"] = clean_text_for_display(entity["name"])
return parsed_data
else:
print("No valid JSON found in AI response, using fallback")
return simple_entity_extraction(text)
except Exception as e:
print(f"AI extraction failed: {e}, using fallback")
return simple_entity_extraction(text)
def build_knowledge_graph(entities_data):
"""Build and visualize knowledge graph.
Args:
entities_data: Dictionary containing entities and relationships
Returns:
PIL Image object of the knowledge graph
"""
try:
# Create networkx graph
G = nx.Graph()
# Add nodes (entities)
entities = entities_data.get("entities", [])
for entity in entities[:15]: # Limit to 15 entities for better visualization
clean_name = clean_text_for_display(entity.get("name", "Unknown"))
if clean_name and len(clean_name.strip()) > 0:
G.add_node(clean_name,
type=entity.get("type", "UNKNOWN"),
description=entity.get("description", ""))
# Add edges (relationships)
relationships = entities_data.get("relationships", [])
for rel in relationships:
source = clean_text_for_display(rel.get("source", ""))
target = clean_text_for_display(rel.get("target", ""))
if source in G.nodes and target in G.nodes:
G.add_edge(source, target,
relation=rel.get("relation", "related"),
description=rel.get("description", ""))
# If no relationships found, create some connections between entities
if len(relationships) == 0 and len(list(G.nodes())) > 1:
node_list = list(G.nodes())
for i in range(min(len(node_list) - 1, 5)):
G.add_edge(node_list[i], node_list[i + 1], relation="related")
# Create visualization
fig, ax = plt.subplots(figsize=(10, 8))
# Skip if no nodes
if len(G.nodes()) == 0:
ax.text(0.5, 0.5, "No entities found to visualize",
ha='center', va='center', fontsize=14, transform=ax.transAxes)
ax.set_title("Knowledge Graph")
ax.axis('off')
else:
# Position nodes using spring layout
pos = nx.spring_layout(G, k=1, iterations=50)
# Color nodes by type
node_colors = []
type_colors = {
"PERSON": "#FF6B6B",
"ORG": "#4ECDC4",
"LOCATION": "#45B7D1",
"CONCEPT": "#96CEB4",
"ERROR": "#FF0000",
"UNKNOWN": "#DDA0DD"
}
for node in G.nodes():
node_type = G.nodes[node].get('type', 'UNKNOWN')
node_colors.append(type_colors.get(node_type, "#DDA0DD"))
# Draw the graph
nx.draw(G, pos,
node_color=node_colors,
node_size=800,
font_size=8,
font_weight='bold',
with_labels=True,
edge_color='gray',
width=1.5,
alpha=0.8,
ax=ax)
# Add title
ax.set_title("Knowledge Graph", size=14, weight='bold')
# Convert to PIL Image
fig.canvas.draw()
# Handle different matplotlib versions
try:
# Try newer method first
img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
# Convert RGBA to RGB
img_array = img_array[:, :, :3]
except AttributeError:
try:
# Fallback to older method
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
except AttributeError:
# Final fallback - save to buffer
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
from PIL import Image
pil_image = Image.open(buf).convert('RGB')
plt.close(fig)
return pil_image
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
except Exception as e:
# Create simple error image
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, f"Error creating graph",
ha='center', va='center', fontsize=12, transform=ax.transAxes)
ax.set_title("Knowledge Graph Error")
ax.axis('off')
# Handle different matplotlib versions for error image
try:
# Try newer method first
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
img_array = img_array[:, :, :3] # Convert RGBA to RGB
except AttributeError:
try:
# Fallback to older method
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
except AttributeError:
# Final fallback - save to buffer
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
from PIL import Image
pil_image = Image.open(buf).convert('RGB')
plt.close(fig)
return pil_image
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
def knowledge_graph_builder(url_or_text):
"""Main function to build knowledge graph from URL or text.
Args:
url_or_text: URL to analyze or direct text input
Returns:
Tuple of (entities_json, graph_image, summary)
"""
try:
if not url_or_text or len(url_or_text.strip()) == 0:
return "{}", None, "Please provide some text or a URL to analyze."
# Step 1: Fetch content
content = fetch_content(url_or_text)
if content.startswith("Error"):
return json.dumps({"error": content}), None, content
# Step 2: Extract entities
entities_data = extract_entities(content)
# Step 3: Build knowledge graph
graph_image = build_knowledge_graph(entities_data)
# Step 4: Create summary
num_entities = len(entities_data.get("entities", []))
num_relationships = len(entities_data.get("relationships", []))
summary = f"""## Knowledge Graph Analysis Complete!
πŸ“Š **Statistics:**
- Entities found: {num_entities}
- Relationships found: {num_relationships}
- Content length: {len(content)} characters
πŸ” **Extracted Entities:**"""
for entity in entities_data.get("entities", [])[:8]: # Show first 8
name = entity.get('name', 'Unknown')
entity_type = entity.get('type', 'UNKNOWN')
desc = entity.get('description', 'No description')
summary += f"\nβ€’ **{name}** ({entity_type}): {desc}"
if len(entities_data.get("entities", [])) > 8:
summary += f"\n\n... and {len(entities_data.get('entities', [])) - 8} more entities"
# Ensure valid JSON output
try:
json_output = json.dumps(entities_data, indent=2, ensure_ascii=True)
except Exception as e:
json_output = json.dumps({"error": f"JSON serialization failed: {str(e)}"})
return json_output, graph_image, summary
except Exception as e:
error_msg = f"Analysis failed: {str(e)}"
return json.dumps({"error": error_msg}), None, error_msg
# Create Gradio interface with error handling
try:
demo = gr.Interface(
fn=knowledge_graph_builder,
inputs=[
gr.Textbox(
label="URL or Text Input",
placeholder="Enter a URL (https://example.com) or paste text directly...",
lines=3,
info="Enter a website URL to analyze, or paste text content directly"
)
],
outputs=[
gr.JSON(label="Extracted Entities & Relationships"),
gr.Image(label="Knowledge Graph Visualization", type="pil"),
gr.Markdown(label="Analysis Summary")
],
title="🧠 AI Knowledge Graph Builder",
description="""
**Transform any text or webpage into an interactive knowledge graph!**
This tool:
1. πŸ“– Extracts content from URLs or analyzes your text
2. πŸ€– Uses AI to identify entities and relationships
3. πŸ•ΈοΈ Builds and visualizes knowledge graphs
4. πŸ“Š Provides detailed analysis summaries
**Try with:** news articles, Wikipedia pages, or any text content
""",
theme=gr.themes.Soft(),
allow_flagging="never",
cache_examples=False # Disable example caching to prevent startup errors
)
except Exception as e:
print(f"Failed to create Gradio interface: {e}")
# Create a simple fallback interface
def simple_demo(text):
return json.dumps({"error": f"Startup failed: {str(e)}"}), None, "Application failed to start properly."
demo = gr.Interface(
fn=simple_demo,
inputs=[gr.Textbox(label="Input", placeholder="Enter text...")],
outputs=[
gr.JSON(label="Error Output"),
gr.Image(label="No Image"),
gr.Markdown(label="Error Message")
],
title="⚠️ Knowledge Graph Builder - Startup Error",
allow_flagging="never",
cache_examples=False
)
# Launch the demo
if __name__ == "__main__":
try:
demo.launch(
mcp_server=True,
share=False,
show_error=True,
quiet=False
)
except Exception as e:
print(f"Launch failed: {e}")
# Try without MCP server as fallback
try:
demo.launch(
mcp_server=False,
share=False,
show_error=True
)
except Exception as e2:
print(f"Complete failure: {e2}")