Spaces:
Running
Running
File size: 17,396 Bytes
b99df01 d44d865 cfa2282 a5510cb cfa2282 a5510cb cfa2282 a5510cb cfa2282 b99df01 d44d865 b99df01 d44d865 b99df01 d44d865 b99df01 cfa2282 b99df01 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 a5510cb d44d865 cfa2282 d44d865 cfa2282 d44d865 a5510cb d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 d44d865 cfa2282 3283abf cfa2282 3283abf cfa2282 d44d865 cfa2282 3283abf d44d865 cfa2282 3283abf cfa2282 3283abf a5510cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import gradio as gr
import os
import json
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from huggingface_hub import InferenceClient
import re
from urllib.parse import urlparse
import warnings
# Configure matplotlib for better font handling
plt.rcParams['font.family'] = ['DejaVu Sans']
plt.rcParams['font.size'] = 10
plt.rcParams['font.weight'] = 'normal'
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', message='.*Font family.*not found.*')
def clean_text_for_display(text):
"""Clean text to remove characters that might cause font issues."""
if not isinstance(text, str):
return str(text)
# Remove or replace problematic characters
text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters
text = re.sub(r'\s+', ' ', text).strip() # Normalize whitespace
return text[:50] if len(text) > 50 else text # Limit length for display
def fetch_content(url_or_text):
"""Fetch content from URL or return text directly.
Args:
url_or_text: Either a URL to fetch content from, or direct text input
Returns:
Extracted text content
"""
try:
# Check if input looks like a URL
parsed = urlparse(url_or_text)
if parsed.scheme in ['http', 'https']:
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url_or_text, headers=headers, timeout=10)
response.raise_for_status()
# Parse HTML and extract text
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text and clean it up
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:5000] # Limit to first 5000 characters
except Exception as e:
return f"Error fetching URL: {str(e)}"
else:
# It's direct text input
return url_or_text
except Exception as e:
return f"Error processing input: {str(e)}"
def simple_entity_extraction(text):
"""Fallback entity extraction when AI is not available."""
try:
words = text.split()
entities = []
# Simple heuristic: words that are capitalized and longer than 2 characters
seen = set()
for word in words[:30]: # Limit to first 30 words
clean_word = re.sub(r'[^\w]', '', word)
if (clean_word.istitle() and len(clean_word) > 2 and
clean_word.lower() not in seen and
clean_word not in ['The', 'This', 'That', 'When', 'Where', 'How']):
entities.append({
"name": clean_text_for_display(clean_word),
"type": "CONCEPT",
"description": "Auto-detected entity"
})
seen.add(clean_word.lower())
# Create some basic relationships
relationships = []
if len(entities) > 1:
for i in range(min(len(entities) - 1, 5)): # Max 5 relationships
relationships.append({
"source": entities[i]["name"],
"target": entities[i + 1]["name"],
"relation": "related_to",
"description": "Sequential relationship"
})
return {"entities": entities[:10], "relationships": relationships}
except Exception as e:
return {
"entities": [{"name": "Error", "type": "ERROR", "description": str(e)}],
"relationships": []
}
def extract_entities(text):
"""Extract entities and relationships using Mistral AI with fallback.
Args:
text: Input text to analyze
Returns:
Dictionary containing entities and relationships
"""
try:
# Check if HF_TOKEN is available
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
print("No HF_TOKEN found, using simple extraction")
return simple_entity_extraction(text)
client = InferenceClient(
provider="together",
api_key=hf_token,
)
prompt = f"""
Analyze the following text and extract:
1. Named entities (people, organizations, locations, concepts)
2. Relationships between these entities
Return ONLY a valid JSON object with this structure:
{{
"entities": [
{{"name": "entity_name", "type": "PERSON", "description": "brief description"}}
],
"relationships": [
{{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
]
}}
Text to analyze: {text[:1500]}
"""
completion = client.chat.completions.create(
model="mistralai/Mistral-Small-24B-Instruct-2501",
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=0.1,
)
response_text = completion.choices[0].message.content
# Clean and extract JSON
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
json_str = json_match.group()
# Clean the JSON string
json_str = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', json_str) # Remove control characters
parsed_data = json.loads(json_str)
# Clean entity names for display
if "entities" in parsed_data:
for entity in parsed_data["entities"]:
if "name" in entity:
entity["name"] = clean_text_for_display(entity["name"])
return parsed_data
else:
print("No valid JSON found in AI response, using fallback")
return simple_entity_extraction(text)
except Exception as e:
print(f"AI extraction failed: {e}, using fallback")
return simple_entity_extraction(text)
def build_knowledge_graph(entities_data):
"""Build and visualize knowledge graph.
Args:
entities_data: Dictionary containing entities and relationships
Returns:
PIL Image object of the knowledge graph
"""
try:
# Create networkx graph
G = nx.Graph()
# Add nodes (entities)
entities = entities_data.get("entities", [])
for entity in entities[:15]: # Limit to 15 entities for better visualization
clean_name = clean_text_for_display(entity.get("name", "Unknown"))
if clean_name and len(clean_name.strip()) > 0:
G.add_node(clean_name,
type=entity.get("type", "UNKNOWN"),
description=entity.get("description", ""))
# Add edges (relationships)
relationships = entities_data.get("relationships", [])
for rel in relationships:
source = clean_text_for_display(rel.get("source", ""))
target = clean_text_for_display(rel.get("target", ""))
if source in G.nodes and target in G.nodes:
G.add_edge(source, target,
relation=rel.get("relation", "related"),
description=rel.get("description", ""))
# If no relationships found, create some connections between entities
if len(relationships) == 0 and len(list(G.nodes())) > 1:
node_list = list(G.nodes())
for i in range(min(len(node_list) - 1, 5)):
G.add_edge(node_list[i], node_list[i + 1], relation="related")
# Create visualization
fig, ax = plt.subplots(figsize=(10, 8))
# Skip if no nodes
if len(G.nodes()) == 0:
ax.text(0.5, 0.5, "No entities found to visualize",
ha='center', va='center', fontsize=14, transform=ax.transAxes)
ax.set_title("Knowledge Graph")
ax.axis('off')
else:
# Position nodes using spring layout
pos = nx.spring_layout(G, k=1, iterations=50)
# Color nodes by type
node_colors = []
type_colors = {
"PERSON": "#FF6B6B",
"ORG": "#4ECDC4",
"LOCATION": "#45B7D1",
"CONCEPT": "#96CEB4",
"ERROR": "#FF0000",
"UNKNOWN": "#DDA0DD"
}
for node in G.nodes():
node_type = G.nodes[node].get('type', 'UNKNOWN')
node_colors.append(type_colors.get(node_type, "#DDA0DD"))
# Draw the graph
nx.draw(G, pos,
node_color=node_colors,
node_size=800,
font_size=8,
font_weight='bold',
with_labels=True,
edge_color='gray',
width=1.5,
alpha=0.8,
ax=ax)
# Add title
ax.set_title("Knowledge Graph", size=14, weight='bold')
# Convert to PIL Image
fig.canvas.draw()
# Handle different matplotlib versions
try:
# Try newer method first
img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
# Convert RGBA to RGB
img_array = img_array[:, :, :3]
except AttributeError:
try:
# Fallback to older method
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
except AttributeError:
# Final fallback - save to buffer
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
from PIL import Image
pil_image = Image.open(buf).convert('RGB')
plt.close(fig)
return pil_image
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
except Exception as e:
# Create simple error image
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, f"Error creating graph",
ha='center', va='center', fontsize=12, transform=ax.transAxes)
ax.set_title("Knowledge Graph Error")
ax.axis('off')
# Handle different matplotlib versions for error image
try:
# Try newer method first
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
img_array = img_array[:, :, :3] # Convert RGBA to RGB
except AttributeError:
try:
# Fallback to older method
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
except AttributeError:
# Final fallback - save to buffer
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
from PIL import Image
pil_image = Image.open(buf).convert('RGB')
plt.close(fig)
return pil_image
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
def knowledge_graph_builder(url_or_text):
"""Main function to build knowledge graph from URL or text.
Args:
url_or_text: URL to analyze or direct text input
Returns:
Tuple of (entities_json, graph_image, summary)
"""
try:
if not url_or_text or len(url_or_text.strip()) == 0:
return "{}", None, "Please provide some text or a URL to analyze."
# Step 1: Fetch content
content = fetch_content(url_or_text)
if content.startswith("Error"):
return json.dumps({"error": content}), None, content
# Step 2: Extract entities
entities_data = extract_entities(content)
# Step 3: Build knowledge graph
graph_image = build_knowledge_graph(entities_data)
# Step 4: Create summary
num_entities = len(entities_data.get("entities", []))
num_relationships = len(entities_data.get("relationships", []))
summary = f"""## Knowledge Graph Analysis Complete!
π **Statistics:**
- Entities found: {num_entities}
- Relationships found: {num_relationships}
- Content length: {len(content)} characters
π **Extracted Entities:**"""
for entity in entities_data.get("entities", [])[:8]: # Show first 8
name = entity.get('name', 'Unknown')
entity_type = entity.get('type', 'UNKNOWN')
desc = entity.get('description', 'No description')
summary += f"\nβ’ **{name}** ({entity_type}): {desc}"
if len(entities_data.get("entities", [])) > 8:
summary += f"\n\n... and {len(entities_data.get('entities', [])) - 8} more entities"
# Ensure valid JSON output
try:
json_output = json.dumps(entities_data, indent=2, ensure_ascii=True)
except Exception as e:
json_output = json.dumps({"error": f"JSON serialization failed: {str(e)}"})
return json_output, graph_image, summary
except Exception as e:
error_msg = f"Analysis failed: {str(e)}"
return json.dumps({"error": error_msg}), None, error_msg
# Create Gradio interface with error handling
try:
demo = gr.Interface(
fn=knowledge_graph_builder,
inputs=[
gr.Textbox(
label="URL or Text Input",
placeholder="Enter a URL (https://example.com) or paste text directly...",
lines=3,
info="Enter a website URL to analyze, or paste text content directly"
)
],
outputs=[
gr.JSON(label="Extracted Entities & Relationships"),
gr.Image(label="Knowledge Graph Visualization", type="pil"),
gr.Markdown(label="Analysis Summary")
],
title="π§ AI Knowledge Graph Builder",
description="""
**Transform any text or webpage into an interactive knowledge graph!**
This tool:
1. π Extracts content from URLs or analyzes your text
2. π€ Uses AI to identify entities and relationships
3. πΈοΈ Builds and visualizes knowledge graphs
4. π Provides detailed analysis summaries
**Try with:** news articles, Wikipedia pages, or any text content
""",
theme=gr.themes.Soft(),
allow_flagging="never",
cache_examples=False # Disable example caching to prevent startup errors
)
except Exception as e:
print(f"Failed to create Gradio interface: {e}")
# Create a simple fallback interface
def simple_demo(text):
return json.dumps({"error": f"Startup failed: {str(e)}"}), None, "Application failed to start properly."
demo = gr.Interface(
fn=simple_demo,
inputs=[gr.Textbox(label="Input", placeholder="Enter text...")],
outputs=[
gr.JSON(label="Error Output"),
gr.Image(label="No Image"),
gr.Markdown(label="Error Message")
],
title="β οΈ Knowledge Graph Builder - Startup Error",
allow_flagging="never",
cache_examples=False
)
# Launch the demo
if __name__ == "__main__":
try:
demo.launch(
mcp_server=True,
share=False,
show_error=True,
quiet=False
)
except Exception as e:
print(f"Launch failed: {e}")
# Try without MCP server as fallback
try:
demo.launch(
mcp_server=False,
share=False,
show_error=True
)
except Exception as e2:
print(f"Complete failure: {e2}")
|