File size: 17,396 Bytes
b99df01
d44d865
 
 
 
 
 
 
 
 
 
 
 
cfa2282
 
 
a5510cb
cfa2282
a5510cb
cfa2282
a5510cb
cfa2282
 
 
 
 
 
 
 
 
 
b99df01
d44d865
 
b99df01
 
d44d865
b99df01
 
d44d865
b99df01
cfa2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99df01
d44d865
cfa2282
d44d865
 
 
 
 
 
 
 
cfa2282
 
 
 
 
 
d44d865
 
cfa2282
d44d865
 
 
 
 
 
 
cfa2282
d44d865
 
cfa2282
d44d865
 
 
 
 
 
cfa2282
 
d44d865
 
 
cfa2282
 
 
d44d865
 
 
 
cfa2282
d44d865
 
 
cfa2282
 
 
 
 
 
 
 
 
 
d44d865
cfa2282
 
 
 
d44d865
 
cfa2282
 
d44d865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfa2282
 
 
 
 
 
d44d865
 
 
 
cfa2282
 
 
 
d44d865
 
 
 
cfa2282
 
 
 
d44d865
 
cfa2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
 
 
a5510cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
 
 
 
 
 
 
 
cfa2282
d44d865
cfa2282
d44d865
 
 
 
a5510cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfa2282
 
 
d44d865
 
 
 
cfa2282
d44d865
 
 
 
 
 
 
 
 
 
 
cfa2282
 
 
 
 
 
 
 
d44d865
cfa2282
 
 
 
 
d44d865
cfa2282
 
d44d865
cfa2282
 
 
 
 
d44d865
cfa2282
d44d865
 
cfa2282
 
d44d865
cfa2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3283abf
cfa2282
 
3283abf
 
cfa2282
d44d865
cfa2282
 
 
 
3283abf
d44d865
cfa2282
 
3283abf
 
 
 
 
 
 
 
 
cfa2282
3283abf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5510cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import gradio as gr
import os
import json
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from huggingface_hub import InferenceClient
import re
from urllib.parse import urlparse
import warnings

# Configure matplotlib for better font handling
plt.rcParams['font.family'] = ['DejaVu Sans']
plt.rcParams['font.size'] = 10
plt.rcParams['font.weight'] = 'normal'
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', message='.*Font family.*not found.*')

def clean_text_for_display(text):
    """Clean text to remove characters that might cause font issues."""
    if not isinstance(text, str):
        return str(text)
    
    # Remove or replace problematic characters
    text = re.sub(r'[^\x00-\x7F]+', '', text)  # Remove non-ASCII characters
    text = re.sub(r'\s+', ' ', text).strip()   # Normalize whitespace
    return text[:50] if len(text) > 50 else text  # Limit length for display

def fetch_content(url_or_text):
    """Fetch content from URL or return text directly.
    
    Args:
        url_or_text: Either a URL to fetch content from, or direct text input
        
    Returns:
        Extracted text content
    """
    try:
        # Check if input looks like a URL
        parsed = urlparse(url_or_text)
        if parsed.scheme in ['http', 'https']:
            try:
                headers = {
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
                }
                response = requests.get(url_or_text, headers=headers, timeout=10)
                response.raise_for_status()
                
                # Parse HTML and extract text
                soup = BeautifulSoup(response.content, 'html.parser')
                
                # Remove script and style elements
                for script in soup(["script", "style"]):
                    script.decompose()
                
                # Get text and clean it up
                text = soup.get_text()
                lines = (line.strip() for line in text.splitlines())
                chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
                text = ' '.join(chunk for chunk in chunks if chunk)
                
                return text[:5000]  # Limit to first 5000 characters
            except Exception as e:
                return f"Error fetching URL: {str(e)}"
        else:
            # It's direct text input
            return url_or_text
    except Exception as e:
        return f"Error processing input: {str(e)}"

def simple_entity_extraction(text):
    """Fallback entity extraction when AI is not available."""
    try:
        words = text.split()
        entities = []
        
        # Simple heuristic: words that are capitalized and longer than 2 characters
        seen = set()
        for word in words[:30]:  # Limit to first 30 words
            clean_word = re.sub(r'[^\w]', '', word)
            if (clean_word.istitle() and len(clean_word) > 2 and 
                clean_word.lower() not in seen and 
                clean_word not in ['The', 'This', 'That', 'When', 'Where', 'How']):
                entities.append({
                    "name": clean_text_for_display(clean_word),
                    "type": "CONCEPT",
                    "description": "Auto-detected entity"
                })
                seen.add(clean_word.lower())
        
        # Create some basic relationships
        relationships = []
        if len(entities) > 1:
            for i in range(min(len(entities) - 1, 5)):  # Max 5 relationships
                relationships.append({
                    "source": entities[i]["name"],
                    "target": entities[i + 1]["name"],
                    "relation": "related_to",
                    "description": "Sequential relationship"
                })
        
        return {"entities": entities[:10], "relationships": relationships}
    except Exception as e:
        return {
            "entities": [{"name": "Error", "type": "ERROR", "description": str(e)}],
            "relationships": []
        }

def extract_entities(text):
    """Extract entities and relationships using Mistral AI with fallback.
    
    Args:
        text: Input text to analyze
        
    Returns:
        Dictionary containing entities and relationships
    """
    try:
        # Check if HF_TOKEN is available
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            print("No HF_TOKEN found, using simple extraction")
            return simple_entity_extraction(text)
        
        client = InferenceClient(
            provider="together",
            api_key=hf_token,
        )
        
        prompt = f"""
        Analyze the following text and extract:
        1. Named entities (people, organizations, locations, concepts)
        2. Relationships between these entities
        
        Return ONLY a valid JSON object with this structure:
        {{
            "entities": [
                {{"name": "entity_name", "type": "PERSON", "description": "brief description"}}
            ],
            "relationships": [
                {{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
            ]
        }}
        
        Text to analyze: {text[:1500]}
        """
        
        completion = client.chat.completions.create(
            model="mistralai/Mistral-Small-24B-Instruct-2501",
            messages=[{"role": "user", "content": prompt}],
            max_tokens=1000,
            temperature=0.1,
        )
        
        response_text = completion.choices[0].message.content
        
        # Clean and extract JSON
        json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
        if json_match:
            json_str = json_match.group()
            # Clean the JSON string
            json_str = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', json_str)  # Remove control characters
            
            parsed_data = json.loads(json_str)
            
            # Clean entity names for display
            if "entities" in parsed_data:
                for entity in parsed_data["entities"]:
                    if "name" in entity:
                        entity["name"] = clean_text_for_display(entity["name"])
            
            return parsed_data
        else:
            print("No valid JSON found in AI response, using fallback")
            return simple_entity_extraction(text)
            
    except Exception as e:
        print(f"AI extraction failed: {e}, using fallback")
        return simple_entity_extraction(text)

def build_knowledge_graph(entities_data):
    """Build and visualize knowledge graph.
    
    Args:
        entities_data: Dictionary containing entities and relationships
        
    Returns:
        PIL Image object of the knowledge graph
    """
    try:
        # Create networkx graph
        G = nx.Graph()
        
        # Add nodes (entities)
        entities = entities_data.get("entities", [])
        for entity in entities[:15]:  # Limit to 15 entities for better visualization
            clean_name = clean_text_for_display(entity.get("name", "Unknown"))
            if clean_name and len(clean_name.strip()) > 0:
                G.add_node(clean_name, 
                          type=entity.get("type", "UNKNOWN"),
                          description=entity.get("description", ""))
        
        # Add edges (relationships)
        relationships = entities_data.get("relationships", [])
        for rel in relationships:
            source = clean_text_for_display(rel.get("source", ""))
            target = clean_text_for_display(rel.get("target", ""))
            if source in G.nodes and target in G.nodes:
                G.add_edge(source, target, 
                          relation=rel.get("relation", "related"),
                          description=rel.get("description", ""))
        
        # If no relationships found, create some connections between entities
        if len(relationships) == 0 and len(list(G.nodes())) > 1:
            node_list = list(G.nodes())
            for i in range(min(len(node_list) - 1, 5)):
                G.add_edge(node_list[i], node_list[i + 1], relation="related")
        
        # Create visualization
        fig, ax = plt.subplots(figsize=(10, 8))
        
        # Skip if no nodes
        if len(G.nodes()) == 0:
            ax.text(0.5, 0.5, "No entities found to visualize", 
                   ha='center', va='center', fontsize=14, transform=ax.transAxes)
            ax.set_title("Knowledge Graph")
            ax.axis('off')
        else:
            # Position nodes using spring layout
            pos = nx.spring_layout(G, k=1, iterations=50)
            
            # Color nodes by type
            node_colors = []
            type_colors = {
                "PERSON": "#FF6B6B",
                "ORG": "#4ECDC4", 
                "LOCATION": "#45B7D1",
                "CONCEPT": "#96CEB4",
                "ERROR": "#FF0000",
                "UNKNOWN": "#DDA0DD"
            }
            
            for node in G.nodes():
                node_type = G.nodes[node].get('type', 'UNKNOWN')
                node_colors.append(type_colors.get(node_type, "#DDA0DD"))
            
            # Draw the graph
            nx.draw(G, pos, 
                    node_color=node_colors,
                    node_size=800,
                    font_size=8,
                    font_weight='bold',
                    with_labels=True,
                    edge_color='gray',
                    width=1.5,
                    alpha=0.8,
                    ax=ax)
            
            # Add title
            ax.set_title("Knowledge Graph", size=14, weight='bold')
        
        # Convert to PIL Image
        fig.canvas.draw()
        
        # Handle different matplotlib versions
        try:
            # Try newer method first
            img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
            img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
            # Convert RGBA to RGB
            img_array = img_array[:, :, :3]
        except AttributeError:
            try:
                # Fallback to older method
                img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
                img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
            except AttributeError:
                # Final fallback - save to buffer
                buf = io.BytesIO()
                fig.savefig(buf, format='png', bbox_inches='tight')
                buf.seek(0)
                from PIL import Image
                pil_image = Image.open(buf).convert('RGB')
                plt.close(fig)
                return pil_image
        
        from PIL import Image
        pil_image = Image.fromarray(img_array)
        plt.close(fig)
        
        return pil_image
        
    except Exception as e:
        # Create simple error image
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, f"Error creating graph", 
                ha='center', va='center', fontsize=12, transform=ax.transAxes)
        ax.set_title("Knowledge Graph Error")
        ax.axis('off')
        
        # Handle different matplotlib versions for error image
        try:
            # Try newer method first
            fig.canvas.draw()
            img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
            img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
            img_array = img_array[:, :, :3]  # Convert RGBA to RGB
        except AttributeError:
            try:
                # Fallback to older method
                fig.canvas.draw()
                img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
                img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
            except AttributeError:
                # Final fallback - save to buffer
                buf = io.BytesIO()
                fig.savefig(buf, format='png', bbox_inches='tight')
                buf.seek(0)
                from PIL import Image
                pil_image = Image.open(buf).convert('RGB')
                plt.close(fig)
                return pil_image
        
        from PIL import Image
        pil_image = Image.fromarray(img_array)
        plt.close(fig)
        
        return pil_image

def knowledge_graph_builder(url_or_text):
    """Main function to build knowledge graph from URL or text.
    
    Args:
        url_or_text: URL to analyze or direct text input
        
    Returns:
        Tuple of (entities_json, graph_image, summary)
    """
    try:
        if not url_or_text or len(url_or_text.strip()) == 0:
            return "{}", None, "Please provide some text or a URL to analyze."
        
        # Step 1: Fetch content
        content = fetch_content(url_or_text)
        
        if content.startswith("Error"):
            return json.dumps({"error": content}), None, content
        
        # Step 2: Extract entities
        entities_data = extract_entities(content)
        
        # Step 3: Build knowledge graph
        graph_image = build_knowledge_graph(entities_data)
        
        # Step 4: Create summary
        num_entities = len(entities_data.get("entities", []))
        num_relationships = len(entities_data.get("relationships", []))
        
        summary = f"""## Knowledge Graph Analysis Complete!

πŸ“Š **Statistics:**
- Entities found: {num_entities}
- Relationships found: {num_relationships}
- Content length: {len(content)} characters

πŸ” **Extracted Entities:**"""
        
        for entity in entities_data.get("entities", [])[:8]:  # Show first 8
            name = entity.get('name', 'Unknown')
            entity_type = entity.get('type', 'UNKNOWN')
            desc = entity.get('description', 'No description')
            summary += f"\nβ€’ **{name}** ({entity_type}): {desc}"
        
        if len(entities_data.get("entities", [])) > 8:
            summary += f"\n\n... and {len(entities_data.get('entities', [])) - 8} more entities"
        
        # Ensure valid JSON output
        try:
            json_output = json.dumps(entities_data, indent=2, ensure_ascii=True)
        except Exception as e:
            json_output = json.dumps({"error": f"JSON serialization failed: {str(e)}"})
        
        return json_output, graph_image, summary
            
    except Exception as e:
        error_msg = f"Analysis failed: {str(e)}"
        return json.dumps({"error": error_msg}), None, error_msg

# Create Gradio interface with error handling
try:
    demo = gr.Interface(
        fn=knowledge_graph_builder,
        inputs=[
            gr.Textbox(
                label="URL or Text Input", 
                placeholder="Enter a URL (https://example.com) or paste text directly...",
                lines=3,
                info="Enter a website URL to analyze, or paste text content directly"
            )
        ],
        outputs=[
            gr.JSON(label="Extracted Entities & Relationships"),
            gr.Image(label="Knowledge Graph Visualization", type="pil"),
            gr.Markdown(label="Analysis Summary")
        ],
        title="🧠 AI Knowledge Graph Builder",
        description="""
        **Transform any text or webpage into an interactive knowledge graph!**
        
        This tool:
        1. πŸ“– Extracts content from URLs or analyzes your text
        2. πŸ€– Uses AI to identify entities and relationships  
        3. πŸ•ΈοΈ Builds and visualizes knowledge graphs
        4. πŸ“Š Provides detailed analysis summaries
        
        **Try with:** news articles, Wikipedia pages, or any text content
        """,
        theme=gr.themes.Soft(),
        allow_flagging="never",
        cache_examples=False  # Disable example caching to prevent startup errors
    )
    
except Exception as e:
    print(f"Failed to create Gradio interface: {e}")
    # Create a simple fallback interface
    def simple_demo(text):
        return json.dumps({"error": f"Startup failed: {str(e)}"}), None, "Application failed to start properly."
    
    demo = gr.Interface(
        fn=simple_demo,
        inputs=[gr.Textbox(label="Input", placeholder="Enter text...")],
        outputs=[
            gr.JSON(label="Error Output"),
            gr.Image(label="No Image"),
            gr.Markdown(label="Error Message")
        ],
        title="⚠️ Knowledge Graph Builder - Startup Error",
        allow_flagging="never",
        cache_examples=False
    )

# Launch the demo
if __name__ == "__main__":
    try:
        demo.launch(
            mcp_server=True, 
            share=False,
            show_error=True,
            quiet=False
        )
    except Exception as e:
        print(f"Launch failed: {e}")
        # Try without MCP server as fallback
        try:
            demo.launch(
                mcp_server=False,
                share=False,
                show_error=True
            )
        except Exception as e2:
            print(f"Complete failure: {e2}")