demo-mcp / app.py
VirtualOasis's picture
Update app.py
b914d47 verified
raw
history blame
22.2 kB
import gradio as gr
import os
import json
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from huggingface_hub import InferenceClient
import re
from urllib.parse import urlparse
import warnings
# Configure matplotlib for better font handling
plt.rcParams['font.family'] = ['DejaVu Sans']
plt.rcParams['font.size'] = 10
plt.rcParams['font.weight'] = 'normal'
plt.rcParams['figure.max_open_warning'] = 0 # Disable figure warnings
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', message='.*Font family.*not found.*')
warnings.filterwarnings('ignore', message='.*Matplotlib.*')
def clean_text_for_display(text):
"""Clean text to remove characters that might cause font issues."""
if not isinstance(text, str):
return str(text)
# Remove or replace problematic characters
text = re.sub(r'[^\x00-\x7F]+', '', text) # Remove non-ASCII characters
text = re.sub(r'\s+', ' ', text).strip() # Normalize whitespace
return text[:50] if len(text) > 50 else text # Limit length for display
def fetch_content(url_or_text):
"""Fetch content from URL or return text directly.
Args:
url_or_text: Either a URL to fetch content from, or direct text input
Returns:
Extracted text content
"""
try:
# Check if input looks like a URL
parsed = urlparse(url_or_text)
if parsed.scheme in ['http', 'https']:
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url_or_text, headers=headers, timeout=10)
response.raise_for_status()
# Parse HTML and extract text
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text and clean it up
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:5000] # Limit to first 5000 characters
except Exception as e:
return f"Error fetching URL: {str(e)}"
else:
# It's direct text input
return url_or_text
except Exception as e:
return f"Error processing input: {str(e)}"
def simple_entity_extraction(text):
"""Fallback entity extraction when AI is not available."""
try:
words = text.split()
entities = []
# Simple heuristic: words that are capitalized and longer than 2 characters
seen = set()
for word in words[:30]: # Limit to first 30 words
clean_word = re.sub(r'[^\w]', '', word)
if (clean_word.istitle() and len(clean_word) > 2 and
clean_word.lower() not in seen and
clean_word not in ['The', 'This', 'That', 'When', 'Where', 'How']):
entities.append({
"name": clean_text_for_display(clean_word),
"type": "CONCEPT",
"description": "Auto-detected entity"
})
seen.add(clean_word.lower())
# Create some basic relationships
relationships = []
if len(entities) > 1:
for i in range(min(len(entities) - 1, 5)): # Max 5 relationships
relationships.append({
"source": entities[i]["name"],
"target": entities[i + 1]["name"],
"relation": "related_to",
"description": "Sequential relationship"
})
return {"entities": entities[:10], "relationships": relationships}
except Exception as e:
return {
"entities": [{"name": "Error", "type": "ERROR", "description": str(e)}],
"relationships": []
}
def extract_entities(text):
"""Extract entities and relationships using Mistral AI with fallback.
Args:
text: Input text to analyze
Returns:
Dictionary containing entities and relationships
"""
try:
# Check if HF_TOKEN is available
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
print("No HF_TOKEN found, using simple extraction")
return simple_entity_extraction(text)
client = InferenceClient(
provider="together",
api_key=hf_token,
)
prompt = f"""
Analyze the following text and extract:
1. Named entities (people, organizations, locations, concepts)
2. Relationships between these entities
Return ONLY a valid JSON object with this structure:
{{
"entities": [
{{"name": "entity_name", "type": "PERSON", "description": "brief description"}}
],
"relationships": [
{{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
]
}}
Text to analyze: {text[:1500]}
"""
completion = client.chat.completions.create(
model="mistralai/Mistral-Small-24B-Instruct-2501",
messages=[{"role": "user", "content": prompt}],
max_tokens=1000,
temperature=0.1,
)
response_text = completion.choices[0].message.content
# Clean and extract JSON
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
json_str = json_match.group()
# Clean the JSON string
json_str = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', json_str) # Remove control characters
parsed_data = json.loads(json_str)
# Clean entity names for display
if "entities" in parsed_data:
for entity in parsed_data["entities"]:
if "name" in entity:
entity["name"] = clean_text_for_display(entity["name"])
return parsed_data
else:
print("No valid JSON found in AI response, using fallback")
return simple_entity_extraction(text)
except Exception as e:
print(f"AI extraction failed: {e}, using fallback")
return simple_entity_extraction(text)
def build_knowledge_graph(entities_data):
"""Build and visualize knowledge graph.
Args:
entities_data: Dictionary containing entities and relationships
Returns:
PIL Image object of the knowledge graph
"""
try:
# Create networkx graph
G = nx.Graph()
# Add nodes (entities)
entities = entities_data.get("entities", [])
for entity in entities[:15]: # Limit to 15 entities for better visualization
clean_name = clean_text_for_display(entity.get("name", "Unknown"))
if clean_name and len(clean_name.strip()) > 0:
G.add_node(clean_name,
type=entity.get("type", "UNKNOWN"),
description=entity.get("description", ""))
# Add edges (relationships)
relationships = entities_data.get("relationships", [])
for rel in relationships:
source = clean_text_for_display(rel.get("source", ""))
target = clean_text_for_display(rel.get("target", ""))
if source in G.nodes and target in G.nodes:
G.add_edge(source, target,
relation=rel.get("relation", "related"),
description=rel.get("description", ""))
# If no relationships found, create some connections between entities
if len(relationships) == 0 and len(list(G.nodes())) > 1:
node_list = list(G.nodes())
for i in range(min(len(node_list) - 1, 5)):
G.add_edge(node_list[i], node_list[i + 1], relation="related")
# Create visualization
fig, ax = plt.subplots(figsize=(10, 8))
# Skip if no nodes
if len(G.nodes()) == 0:
ax.text(0.5, 0.5, "No entities found to visualize",
ha='center', va='center', fontsize=14, transform=ax.transAxes)
ax.set_title("Knowledge Graph")
ax.axis('off')
else:
# Position nodes using spring layout
pos = nx.spring_layout(G, k=1, iterations=50)
# Color nodes by type
node_colors = []
type_colors = {
"PERSON": "#FF6B6B",
"ORG": "#4ECDC4",
"LOCATION": "#45B7D1",
"CONCEPT": "#96CEB4",
"ERROR": "#FF0000",
"UNKNOWN": "#DDA0DD"
}
for node in G.nodes():
node_type = G.nodes[node].get('type', 'UNKNOWN')
node_colors.append(type_colors.get(node_type, "#DDA0DD"))
# Draw the graph
nx.draw(G, pos,
node_color=node_colors,
node_size=800,
font_size=8,
font_weight='bold',
with_labels=True,
edge_color='gray',
width=1.5,
alpha=0.8,
ax=ax)
# Add title
ax.set_title("Knowledge Graph", size=14, weight='bold')
# Convert to PIL Image
fig.canvas.draw()
# Handle different matplotlib versions
try:
# Try newer method first
img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
# Convert RGBA to RGB
img_array = img_array[:, :, :3]
except AttributeError:
try:
# Fallback to older method
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
except AttributeError:
# Final fallback - save to buffer
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
from PIL import Image
pil_image = Image.open(buf).convert('RGB')
plt.close(fig)
return pil_image
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
except Exception as e:
# Create simple error image
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, f"Error creating graph",
ha='center', va='center', fontsize=12, transform=ax.transAxes)
ax.set_title("Knowledge Graph Error")
ax.axis('off')
# Handle different matplotlib versions for error image
try:
# Try newer method first
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
img_array = img_array[:, :, :3] # Convert RGBA to RGB
except AttributeError:
try:
# Fallback to older method
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
except AttributeError:
# Final fallback - save to buffer
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
from PIL import Image
pil_image = Image.open(buf).convert('RGB')
plt.close(fig)
return pil_image
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
def build_ascii_diagram(entities, relationships):
"""Create simple ASCII diagram of knowledge graph"""
if not entities:
return "No entities to visualize"
diagram = "KNOWLEDGE GRAPH DIAGRAM:\n"
diagram += "=" * 30 + "\n\n" # Reduced line length
# Show entities by type
entity_types = {}
for entity in entities: # Already limited by caller
etype = entity.get("type", "UNKNOWN")
if etype not in entity_types:
entity_types[etype] = []
entity_types[etype].append(entity.get("name", "Unknown"))
for etype, names in entity_types.items():
diagram += f"{etype}:\n" # Removed emoji for MCP compatibility
for name in names:
diagram += f" - {name}\n"
diagram += "\n"
# Show relationships
if relationships:
diagram += "RELATIONSHIPS:\n" # Removed emoji for MCP compatibility
for rel in relationships: # Already limited by caller
source = rel.get("source", "?")
target = rel.get("target", "?")
relation = rel.get("relation", "related")
diagram += f" {source} -> {target} ({relation})\n"
return diagram
def validate_mcp_response(response_data):
"""Validate and sanitize response for MCP compatibility"""
try:
# Ensure all string values are ASCII-safe
def sanitize_strings(obj):
if isinstance(obj, dict):
return {k: sanitize_strings(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [sanitize_strings(item) for item in obj]
elif isinstance(obj, str):
# Remove non-ASCII characters and control characters
return re.sub(r'[^\x20-\x7E\n\r\t]', '', obj)
else:
return obj
sanitized = sanitize_strings(response_data)
# Test JSON serialization
test_json = json.dumps(sanitized, ensure_ascii=True, separators=(',', ':'))
# Size check
if len(test_json) > 100000: # 100KB hard limit
# Drastically reduce content
sanitized["entities"] = sanitized.get("entities", [])[:5]
sanitized["relationships"] = sanitized.get("relationships", [])[:3]
sanitized["diagram"] = "Knowledge graph generated (content reduced for MCP)"
return sanitized
except Exception as e:
return {
"success": False,
"error": f"Response validation failed: {str(e)}",
"entities": [],
"relationships": [],
"diagram": "Error generating diagram",
"summary": "Analysis failed during response validation"
}
def build_kg(url_or_text):
"""Main function to build knowledge graph from URL or text.
Args:
url_or_text: URL to analyze or direct text input
Returns:
String: Simple JSON response optimized for MCP streaming
"""
try:
# Quick validation
if not url_or_text or len(url_or_text.strip()) == 0:
return '{"error":"Please provide text or URL to analyze"}'
# Limit input size immediately to prevent timeouts
input_text = url_or_text[:2000] if len(url_or_text) > 2000 else url_or_text
# Step 1: Fetch content (with timeout protection)
try:
content = fetch_content(input_text)
if content.startswith("Error"):
return f'{{"error":"{content}"}}'
except Exception:
content = input_text # Use input directly if fetch fails
# Limit content size for fast processing
content = content[:1500] if len(content) > 1500 else content
# Step 2: Quick entity extraction (simplified for speed)
try:
entities_data = simple_entity_extraction(content) # Always use simple extraction for MCP
except Exception:
entities_data = {"entities": [], "relationships": []}
# Step 3: Minimal response
entities = entities_data.get("entities", [])[:5] # Max 5 entities
relationships = entities_data.get("relationships", [])[:3] # Max 3 relationships
# Create minimal ASCII summary
diagram_parts = []
if entities:
diagram_parts.append("ENTITIES:")
for entity in entities:
name = str(entity.get("name", "Unknown"))[:20] # Truncate names
diagram_parts.append(f" - {name}")
if relationships:
diagram_parts.append("RELATIONSHIPS:")
for rel in relationships:
source = str(rel.get("source", ""))[:15]
target = str(rel.get("target", ""))[:15]
diagram_parts.append(f" {source} -> {target}")
diagram = "\n".join(diagram_parts) if diagram_parts else "No entities found"
# Ultra-minimal response
response = {
"success": True,
"entity_count": len(entities),
"relationship_count": len(relationships),
"entities": [{"name": e.get("name", "")[:20], "type": e.get("type", "UNKNOWN")} for e in entities],
"relationships": [{"source": r.get("source", "")[:15], "target": r.get("target", "")[:15]} for r in relationships],
"diagram": diagram[:500] # Strict limit
}
# Return ultra-compact JSON
return json.dumps(response, separators=(',', ':'))[:2000] # Hard size limit
except Exception as e:
# Ultra-simple error response
error_msg = str(e)[:100] # Truncate error message
return f'{{"success":false,"error":"{error_msg}"}}'
# Wrapper function with timeout protection for MCP
def mcp_safe_build_kg(url_or_text):
"""MCP-safe wrapper with timeout protection"""
try:
import signal
import functools
def timeout_handler(signum, frame):
raise TimeoutError("Function timed out")
# Set timeout for 10 seconds
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(10)
try:
result = build_kg(url_or_text)
signal.alarm(0) # Cancel timeout
return result
except TimeoutError:
return '{"success":false,"error":"Request timed out"}'
except Exception as e:
signal.alarm(0) # Cancel timeout
return f'{{"success":false,"error":"Function error: {str(e)[:50]}"}}'
except Exception:
# Fallback if signal not available (Windows, etc.)
try:
return build_kg(url_or_text)
except Exception as e:
return f'{{"success":false,"error":"Fallback error: {str(e)[:50]}"}}'
# Create Gradio interface with error handling
try:
demo = gr.Interface(
fn=mcp_safe_build_kg, # Use the timeout-protected version
inputs=gr.Textbox(
label="Input Text or URL",
placeholder="Enter text to analyze or paste a URL...",
max_lines=5
),
outputs=gr.Textbox(
label="Knowledge Graph JSON",
show_copy_button=True
),
title="KG Builder - MCP Edition",
description="Lightweight knowledge graph builder optimized for MCP servers.",
allow_flagging="never",
cache_examples=False
)
except Exception as e:
print(f"Failed to create Gradio interface: {e}")
# Create minimal fallback
def error_demo(text):
return f'{{"error":"Interface creation failed: {str(e)[:100]}"}}'
demo = gr.Interface(
fn=error_demo,
inputs="text",
outputs="text",
title="KG Builder - Error Mode",
allow_flagging="never"
)
# Launch the demo
if __name__ == "__main__":
print("Starting KG Builder MCP Server...")
try:
demo.launch(
mcp_server=True,
share=False,
show_error=False, # Reduce error verbosity for MCP
quiet=True, # Reduce logging to prevent SSE issues
server_name="0.0.0.0",
server_port=7860,
max_threads=1, # Limit concurrency to prevent resource issues
show_api=False # Disable API docs to reduce overhead
)
except Exception as e:
print(f"MCP server launch failed: {e}")
print("Trying fallback mode...")
try:
# Fallback without MCP
demo.launch(
mcp_server=False,
share=False,
quiet=True,
show_error=False
)
except Exception as e2:
print(f"All launch attempts failed: {e2}")
print("Creating emergency fallback...")
# Create absolute minimal demo
def emergency_demo(text):
return '{"error":"Server in emergency mode"}'
emergency = gr.Interface(
fn=emergency_demo,
inputs="text",
outputs="text",
title="KG Builder Emergency Mode"
)
emergency.launch(quiet=True, share=False)