File size: 22,224 Bytes
b99df01
d44d865
 
 
 
 
c2b3df9
 
d44d865
 
 
 
 
 
 
cfa2282
 
 
a5510cb
cfa2282
a5510cb
c2b3df9
cfa2282
a5510cb
c2b3df9
cfa2282
 
 
 
 
 
 
 
 
 
b99df01
d44d865
 
b99df01
 
d44d865
b99df01
 
d44d865
b99df01
cfa2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99df01
d44d865
cfa2282
d44d865
 
 
 
 
 
 
 
cfa2282
 
 
 
 
 
d44d865
 
cfa2282
d44d865
 
 
 
 
 
 
cfa2282
d44d865
 
cfa2282
d44d865
 
 
 
 
 
cfa2282
 
d44d865
 
 
cfa2282
 
 
d44d865
 
 
 
cfa2282
d44d865
 
 
cfa2282
 
 
 
 
 
 
 
 
 
d44d865
cfa2282
 
 
 
d44d865
 
cfa2282
 
d44d865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfa2282
 
 
 
 
 
d44d865
 
 
 
cfa2282
 
 
 
d44d865
 
 
 
cfa2282
 
 
 
d44d865
 
cfa2282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
 
 
a5510cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
 
 
 
 
 
 
 
cfa2282
d44d865
cfa2282
d44d865
 
 
 
a5510cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
 
 
 
 
 
 
1810a55
 
 
 
 
 
179e56a
1810a55
 
 
179e56a
1810a55
 
 
 
 
 
179e56a
1810a55
179e56a
1810a55
 
 
 
179e56a
 
1810a55
 
 
179e56a
1810a55
 
 
179e56a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b3df9
d44d865
 
 
 
 
 
b914d47
d44d865
 
b914d47
cfa2282
b914d47
cfa2282
b914d47
 
d44d865
b914d47
 
 
 
 
 
 
d44d865
b914d47
 
c2b3df9
b914d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b3df9
 
b914d47
 
 
 
 
c2b3df9
d44d865
b914d47
 
d44d865
 
b914d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d44d865
cfa2282
 
 
b914d47
 
 
 
 
 
 
 
 
 
 
 
 
 
cfa2282
d44d865
cfa2282
 
b914d47
 
 
 
 
 
 
 
 
 
 
3283abf
 
 
b914d47
 
3283abf
b914d47
 
 
 
 
 
 
 
 
 
3283abf
b914d47
 
3283abf
b914d47
3283abf
 
 
b914d47
 
3283abf
 
b914d47
 
 
 
 
 
179e56a
b914d47
 
 
179e56a
b914d47
179e56a
b914d47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import gradio as gr
import os
import json
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib
matplotlib.use('Agg')  # Use non-interactive backend
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from huggingface_hub import InferenceClient
import re
from urllib.parse import urlparse
import warnings

# Configure matplotlib for better font handling
plt.rcParams['font.family'] = ['DejaVu Sans']
plt.rcParams['font.size'] = 10
plt.rcParams['font.weight'] = 'normal'
plt.rcParams['figure.max_open_warning'] = 0  # Disable figure warnings
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', message='.*Font family.*not found.*')
warnings.filterwarnings('ignore', message='.*Matplotlib.*')

def clean_text_for_display(text):
    """Clean text to remove characters that might cause font issues."""
    if not isinstance(text, str):
        return str(text)
    
    # Remove or replace problematic characters
    text = re.sub(r'[^\x00-\x7F]+', '', text)  # Remove non-ASCII characters
    text = re.sub(r'\s+', ' ', text).strip()   # Normalize whitespace
    return text[:50] if len(text) > 50 else text  # Limit length for display

def fetch_content(url_or_text):
    """Fetch content from URL or return text directly.
    
    Args:
        url_or_text: Either a URL to fetch content from, or direct text input
        
    Returns:
        Extracted text content
    """
    try:
        # Check if input looks like a URL
        parsed = urlparse(url_or_text)
        if parsed.scheme in ['http', 'https']:
            try:
                headers = {
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
                }
                response = requests.get(url_or_text, headers=headers, timeout=10)
                response.raise_for_status()
                
                # Parse HTML and extract text
                soup = BeautifulSoup(response.content, 'html.parser')
                
                # Remove script and style elements
                for script in soup(["script", "style"]):
                    script.decompose()
                
                # Get text and clean it up
                text = soup.get_text()
                lines = (line.strip() for line in text.splitlines())
                chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
                text = ' '.join(chunk for chunk in chunks if chunk)
                
                return text[:5000]  # Limit to first 5000 characters
            except Exception as e:
                return f"Error fetching URL: {str(e)}"
        else:
            # It's direct text input
            return url_or_text
    except Exception as e:
        return f"Error processing input: {str(e)}"

def simple_entity_extraction(text):
    """Fallback entity extraction when AI is not available."""
    try:
        words = text.split()
        entities = []
        
        # Simple heuristic: words that are capitalized and longer than 2 characters
        seen = set()
        for word in words[:30]:  # Limit to first 30 words
            clean_word = re.sub(r'[^\w]', '', word)
            if (clean_word.istitle() and len(clean_word) > 2 and 
                clean_word.lower() not in seen and 
                clean_word not in ['The', 'This', 'That', 'When', 'Where', 'How']):
                entities.append({
                    "name": clean_text_for_display(clean_word),
                    "type": "CONCEPT",
                    "description": "Auto-detected entity"
                })
                seen.add(clean_word.lower())
        
        # Create some basic relationships
        relationships = []
        if len(entities) > 1:
            for i in range(min(len(entities) - 1, 5)):  # Max 5 relationships
                relationships.append({
                    "source": entities[i]["name"],
                    "target": entities[i + 1]["name"],
                    "relation": "related_to",
                    "description": "Sequential relationship"
                })
        
        return {"entities": entities[:10], "relationships": relationships}
    except Exception as e:
        return {
            "entities": [{"name": "Error", "type": "ERROR", "description": str(e)}],
            "relationships": []
        }

def extract_entities(text):
    """Extract entities and relationships using Mistral AI with fallback.
    
    Args:
        text: Input text to analyze
        
    Returns:
        Dictionary containing entities and relationships
    """
    try:
        # Check if HF_TOKEN is available
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            print("No HF_TOKEN found, using simple extraction")
            return simple_entity_extraction(text)
        
        client = InferenceClient(
            provider="together",
            api_key=hf_token,
        )
        
        prompt = f"""
        Analyze the following text and extract:
        1. Named entities (people, organizations, locations, concepts)
        2. Relationships between these entities
        
        Return ONLY a valid JSON object with this structure:
        {{
            "entities": [
                {{"name": "entity_name", "type": "PERSON", "description": "brief description"}}
            ],
            "relationships": [
                {{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
            ]
        }}
        
        Text to analyze: {text[:1500]}
        """
        
        completion = client.chat.completions.create(
            model="mistralai/Mistral-Small-24B-Instruct-2501",
            messages=[{"role": "user", "content": prompt}],
            max_tokens=1000,
            temperature=0.1,
        )
        
        response_text = completion.choices[0].message.content
        
        # Clean and extract JSON
        json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
        if json_match:
            json_str = json_match.group()
            # Clean the JSON string
            json_str = re.sub(r'[\x00-\x1f\x7f-\x9f]', '', json_str)  # Remove control characters
            
            parsed_data = json.loads(json_str)
            
            # Clean entity names for display
            if "entities" in parsed_data:
                for entity in parsed_data["entities"]:
                    if "name" in entity:
                        entity["name"] = clean_text_for_display(entity["name"])
            
            return parsed_data
        else:
            print("No valid JSON found in AI response, using fallback")
            return simple_entity_extraction(text)
            
    except Exception as e:
        print(f"AI extraction failed: {e}, using fallback")
        return simple_entity_extraction(text)

def build_knowledge_graph(entities_data):
    """Build and visualize knowledge graph.
    
    Args:
        entities_data: Dictionary containing entities and relationships
        
    Returns:
        PIL Image object of the knowledge graph
    """
    try:
        # Create networkx graph
        G = nx.Graph()
        
        # Add nodes (entities)
        entities = entities_data.get("entities", [])
        for entity in entities[:15]:  # Limit to 15 entities for better visualization
            clean_name = clean_text_for_display(entity.get("name", "Unknown"))
            if clean_name and len(clean_name.strip()) > 0:
                G.add_node(clean_name, 
                          type=entity.get("type", "UNKNOWN"),
                          description=entity.get("description", ""))
        
        # Add edges (relationships)
        relationships = entities_data.get("relationships", [])
        for rel in relationships:
            source = clean_text_for_display(rel.get("source", ""))
            target = clean_text_for_display(rel.get("target", ""))
            if source in G.nodes and target in G.nodes:
                G.add_edge(source, target, 
                          relation=rel.get("relation", "related"),
                          description=rel.get("description", ""))
        
        # If no relationships found, create some connections between entities
        if len(relationships) == 0 and len(list(G.nodes())) > 1:
            node_list = list(G.nodes())
            for i in range(min(len(node_list) - 1, 5)):
                G.add_edge(node_list[i], node_list[i + 1], relation="related")
        
        # Create visualization
        fig, ax = plt.subplots(figsize=(10, 8))
        
        # Skip if no nodes
        if len(G.nodes()) == 0:
            ax.text(0.5, 0.5, "No entities found to visualize", 
                   ha='center', va='center', fontsize=14, transform=ax.transAxes)
            ax.set_title("Knowledge Graph")
            ax.axis('off')
        else:
            # Position nodes using spring layout
            pos = nx.spring_layout(G, k=1, iterations=50)
            
            # Color nodes by type
            node_colors = []
            type_colors = {
                "PERSON": "#FF6B6B",
                "ORG": "#4ECDC4", 
                "LOCATION": "#45B7D1",
                "CONCEPT": "#96CEB4",
                "ERROR": "#FF0000",
                "UNKNOWN": "#DDA0DD"
            }
            
            for node in G.nodes():
                node_type = G.nodes[node].get('type', 'UNKNOWN')
                node_colors.append(type_colors.get(node_type, "#DDA0DD"))
            
            # Draw the graph
            nx.draw(G, pos, 
                    node_color=node_colors,
                    node_size=800,
                    font_size=8,
                    font_weight='bold',
                    with_labels=True,
                    edge_color='gray',
                    width=1.5,
                    alpha=0.8,
                    ax=ax)
            
            # Add title
            ax.set_title("Knowledge Graph", size=14, weight='bold')
        
        # Convert to PIL Image
        fig.canvas.draw()
        
        # Handle different matplotlib versions
        try:
            # Try newer method first
            img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
            img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
            # Convert RGBA to RGB
            img_array = img_array[:, :, :3]
        except AttributeError:
            try:
                # Fallback to older method
                img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
                img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
            except AttributeError:
                # Final fallback - save to buffer
                buf = io.BytesIO()
                fig.savefig(buf, format='png', bbox_inches='tight')
                buf.seek(0)
                from PIL import Image
                pil_image = Image.open(buf).convert('RGB')
                plt.close(fig)
                return pil_image
        
        from PIL import Image
        pil_image = Image.fromarray(img_array)
        plt.close(fig)
        
        return pil_image
        
    except Exception as e:
        # Create simple error image
        fig, ax = plt.subplots(figsize=(8, 6))
        ax.text(0.5, 0.5, f"Error creating graph", 
                ha='center', va='center', fontsize=12, transform=ax.transAxes)
        ax.set_title("Knowledge Graph Error")
        ax.axis('off')
        
        # Handle different matplotlib versions for error image
        try:
            # Try newer method first
            fig.canvas.draw()
            img_array = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
            img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (4,))
            img_array = img_array[:, :, :3]  # Convert RGBA to RGB
        except AttributeError:
            try:
                # Fallback to older method
                fig.canvas.draw()
                img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
                img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
            except AttributeError:
                # Final fallback - save to buffer
                buf = io.BytesIO()
                fig.savefig(buf, format='png', bbox_inches='tight')
                buf.seek(0)
                from PIL import Image
                pil_image = Image.open(buf).convert('RGB')
                plt.close(fig)
                return pil_image
        
        from PIL import Image
        pil_image = Image.fromarray(img_array)
        plt.close(fig)
        
        return pil_image

def build_ascii_diagram(entities, relationships):
    """Create simple ASCII diagram of knowledge graph"""
    if not entities:
        return "No entities to visualize"
    
    diagram = "KNOWLEDGE GRAPH DIAGRAM:\n"
    diagram += "=" * 30 + "\n\n"  # Reduced line length
    
    # Show entities by type
    entity_types = {}
    for entity in entities:  # Already limited by caller
        etype = entity.get("type", "UNKNOWN")
        if etype not in entity_types:
            entity_types[etype] = []
        entity_types[etype].append(entity.get("name", "Unknown"))
    
    for etype, names in entity_types.items():
        diagram += f"{etype}:\n"  # Removed emoji for MCP compatibility
        for name in names:
            diagram += f"  - {name}\n"
        diagram += "\n"
    
    # Show relationships
    if relationships:
        diagram += "RELATIONSHIPS:\n"  # Removed emoji for MCP compatibility
        for rel in relationships:  # Already limited by caller
            source = rel.get("source", "?")
            target = rel.get("target", "?")
            relation = rel.get("relation", "related")
            diagram += f"  {source} -> {target} ({relation})\n"
    
    return diagram

def validate_mcp_response(response_data):
    """Validate and sanitize response for MCP compatibility"""
    try:
        # Ensure all string values are ASCII-safe
        def sanitize_strings(obj):
            if isinstance(obj, dict):
                return {k: sanitize_strings(v) for k, v in obj.items()}
            elif isinstance(obj, list):
                return [sanitize_strings(item) for item in obj]
            elif isinstance(obj, str):
                # Remove non-ASCII characters and control characters
                return re.sub(r'[^\x20-\x7E\n\r\t]', '', obj)
            else:
                return obj
        
        sanitized = sanitize_strings(response_data)
        
        # Test JSON serialization
        test_json = json.dumps(sanitized, ensure_ascii=True, separators=(',', ':'))
        
        # Size check
        if len(test_json) > 100000:  # 100KB hard limit
            # Drastically reduce content
            sanitized["entities"] = sanitized.get("entities", [])[:5]
            sanitized["relationships"] = sanitized.get("relationships", [])[:3]
            sanitized["diagram"] = "Knowledge graph generated (content reduced for MCP)"
            
        return sanitized
        
    except Exception as e:
        return {
            "success": False,
            "error": f"Response validation failed: {str(e)}",
            "entities": [],
            "relationships": [],
            "diagram": "Error generating diagram",
            "summary": "Analysis failed during response validation"
        }

def build_kg(url_or_text):
    """Main function to build knowledge graph from URL or text.
    
    Args:
        url_or_text: URL to analyze or direct text input
        
    Returns:
        String: Simple JSON response optimized for MCP streaming
    """
    try:
        # Quick validation
        if not url_or_text or len(url_or_text.strip()) == 0:
            return '{"error":"Please provide text or URL to analyze"}'
        
        # Limit input size immediately to prevent timeouts
        input_text = url_or_text[:2000] if len(url_or_text) > 2000 else url_or_text
        
        # Step 1: Fetch content (with timeout protection)
        try:
            content = fetch_content(input_text)
            if content.startswith("Error"):
                return f'{{"error":"{content}"}}'
        except Exception:
            content = input_text  # Use input directly if fetch fails
        
        # Limit content size for fast processing
        content = content[:1500] if len(content) > 1500 else content
        
        # Step 2: Quick entity extraction (simplified for speed)
        try:
            entities_data = simple_entity_extraction(content)  # Always use simple extraction for MCP
        except Exception:
            entities_data = {"entities": [], "relationships": []}
        
        # Step 3: Minimal response
        entities = entities_data.get("entities", [])[:5]  # Max 5 entities
        relationships = entities_data.get("relationships", [])[:3]  # Max 3 relationships
        
        # Create minimal ASCII summary
        diagram_parts = []
        if entities:
            diagram_parts.append("ENTITIES:")
            for entity in entities:
                name = str(entity.get("name", "Unknown"))[:20]  # Truncate names
                diagram_parts.append(f"  - {name}")
        
        if relationships:
            diagram_parts.append("RELATIONSHIPS:")
            for rel in relationships:
                source = str(rel.get("source", ""))[:15]
                target = str(rel.get("target", ""))[:15]
                diagram_parts.append(f"  {source} -> {target}")
        
        diagram = "\n".join(diagram_parts) if diagram_parts else "No entities found"
        
        # Ultra-minimal response
        response = {
            "success": True,
            "entity_count": len(entities),
            "relationship_count": len(relationships), 
            "entities": [{"name": e.get("name", "")[:20], "type": e.get("type", "UNKNOWN")} for e in entities],
            "relationships": [{"source": r.get("source", "")[:15], "target": r.get("target", "")[:15]} for r in relationships],
            "diagram": diagram[:500]  # Strict limit
        }
        
        # Return ultra-compact JSON
        return json.dumps(response, separators=(',', ':'))[:2000]  # Hard size limit
            
    except Exception as e:
        # Ultra-simple error response
        error_msg = str(e)[:100]  # Truncate error message
        return f'{{"success":false,"error":"{error_msg}"}}'

# Wrapper function with timeout protection for MCP
def mcp_safe_build_kg(url_or_text):
    """MCP-safe wrapper with timeout protection"""
    try:
        import signal
        import functools
        
        def timeout_handler(signum, frame):
            raise TimeoutError("Function timed out")
        
        # Set timeout for 10 seconds
        signal.signal(signal.SIGALRM, timeout_handler)
        signal.alarm(10)
        
        try:
            result = build_kg(url_or_text)
            signal.alarm(0)  # Cancel timeout
            return result
        except TimeoutError:
            return '{"success":false,"error":"Request timed out"}'
        except Exception as e:
            signal.alarm(0)  # Cancel timeout
            return f'{{"success":false,"error":"Function error: {str(e)[:50]}"}}'
            
    except Exception:
        # Fallback if signal not available (Windows, etc.)
        try:
            return build_kg(url_or_text)
        except Exception as e:
            return f'{{"success":false,"error":"Fallback error: {str(e)[:50]}"}}'

# Create Gradio interface with error handling
try:
    demo = gr.Interface(
        fn=mcp_safe_build_kg,  # Use the timeout-protected version
        inputs=gr.Textbox(
            label="Input Text or URL",
            placeholder="Enter text to analyze or paste a URL...",
            max_lines=5
        ),
        outputs=gr.Textbox(
            label="Knowledge Graph JSON",
            show_copy_button=True
        ),
        title="KG Builder - MCP Edition",
        description="Lightweight knowledge graph builder optimized for MCP servers.",
        allow_flagging="never",
        cache_examples=False
    )
    
except Exception as e:
    print(f"Failed to create Gradio interface: {e}")
    # Create minimal fallback
    def error_demo(text):
        return f'{{"error":"Interface creation failed: {str(e)[:100]}"}}'
        
    demo = gr.Interface(
        fn=error_demo,
        inputs="text",
        outputs="text",
        title="KG Builder - Error Mode",
        allow_flagging="never"
    )

# Launch the demo
if __name__ == "__main__":
    print("Starting KG Builder MCP Server...")
    
    try:
        demo.launch(
            mcp_server=True,
            share=False,
            show_error=False,  # Reduce error verbosity for MCP
            quiet=True,        # Reduce logging to prevent SSE issues
            server_name="0.0.0.0",
            server_port=7860,
            max_threads=1,     # Limit concurrency to prevent resource issues
            show_api=False     # Disable API docs to reduce overhead
        )
    except Exception as e:
        print(f"MCP server launch failed: {e}")
        print("Trying fallback mode...")
        try:
            # Fallback without MCP
            demo.launch(
                mcp_server=False,
                share=False,
                quiet=True,
                show_error=False
            )
        except Exception as e2:
            print(f"All launch attempts failed: {e2}")
            print("Creating emergency fallback...")
            
            # Create absolute minimal demo
            def emergency_demo(text):
                return '{"error":"Server in emergency mode"}'
            
            emergency = gr.Interface(
                fn=emergency_demo,
                inputs="text", 
                outputs="text",
                title="KG Builder Emergency Mode"
            )
            emergency.launch(quiet=True, share=False)