Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,318 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
"""
|
5 |
|
6 |
Args:
|
7 |
-
|
8 |
-
letter: The letter to count occurrences of
|
9 |
|
10 |
Returns:
|
11 |
-
|
12 |
"""
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
demo = gr.Interface(
|
16 |
-
fn=
|
17 |
-
inputs=[
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
|
23 |
demo.launch(mcp_server=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
from bs4 import BeautifulSoup
|
6 |
+
import networkx as nx
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import io
|
10 |
+
import base64
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
+
import re
|
13 |
+
from urllib.parse import urlparse
|
14 |
|
15 |
+
def fetch_content(url_or_text):
|
16 |
+
"""Fetch content from URL or return text directly.
|
17 |
|
18 |
Args:
|
19 |
+
url_or_text: Either a URL to fetch content from, or direct text input
|
|
|
20 |
|
21 |
Returns:
|
22 |
+
Extracted text content
|
23 |
"""
|
24 |
+
# Check if input looks like a URL
|
25 |
+
parsed = urlparse(url_or_text)
|
26 |
+
if parsed.scheme in ['http', 'https']:
|
27 |
+
try:
|
28 |
+
headers = {
|
29 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
30 |
+
}
|
31 |
+
response = requests.get(url_or_text, headers=headers, timeout=10)
|
32 |
+
response.raise_for_status()
|
33 |
+
|
34 |
+
# Parse HTML and extract text
|
35 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
36 |
+
|
37 |
+
# Remove script and style elements
|
38 |
+
for script in soup(["script", "style"]):
|
39 |
+
script.decompose()
|
40 |
+
|
41 |
+
# Get text and clean it up
|
42 |
+
text = soup.get_text()
|
43 |
+
lines = (line.strip() for line in text.splitlines())
|
44 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
45 |
+
text = ' '.join(chunk for chunk in chunks if chunk)
|
46 |
+
|
47 |
+
return text[:5000] # Limit to first 5000 characters
|
48 |
+
except Exception as e:
|
49 |
+
return f"Error fetching URL: {str(e)}"
|
50 |
+
else:
|
51 |
+
# It's direct text input
|
52 |
+
return url_or_text
|
53 |
|
54 |
+
def extract_entities(text):
|
55 |
+
"""Extract entities and relationships using Mistral.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
text: Input text to analyze
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Dictionary containing entities and relationships
|
62 |
+
"""
|
63 |
+
try:
|
64 |
+
client = InferenceClient(
|
65 |
+
provider="together",
|
66 |
+
api_key=os.environ.get("HF_TOKEN"),
|
67 |
+
)
|
68 |
+
|
69 |
+
prompt = f"""
|
70 |
+
Analyze the following text and extract:
|
71 |
+
1. Named entities (people, organizations, locations, concepts)
|
72 |
+
2. Relationships between these entities
|
73 |
+
|
74 |
+
Return the result as a JSON object with this structure:
|
75 |
+
{{
|
76 |
+
"entities": [
|
77 |
+
{{"name": "entity_name", "type": "PERSON|ORG|LOCATION|CONCEPT", "description": "brief description"}}
|
78 |
+
],
|
79 |
+
"relationships": [
|
80 |
+
{{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
|
81 |
+
]
|
82 |
+
}}
|
83 |
+
|
84 |
+
Text to analyze:
|
85 |
+
{text[:2000]}
|
86 |
+
|
87 |
+
JSON:"""
|
88 |
+
|
89 |
+
completion = client.chat.completions.create(
|
90 |
+
model="mistralai/Mistral-Small-24B-Instruct-2501",
|
91 |
+
messages=[
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": prompt
|
95 |
+
}
|
96 |
+
],
|
97 |
+
max_tokens=1500,
|
98 |
+
temperature=0.3,
|
99 |
+
)
|
100 |
+
|
101 |
+
response_text = completion.choices[0].message.content
|
102 |
+
|
103 |
+
# Extract JSON from response
|
104 |
+
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
|
105 |
+
if json_match:
|
106 |
+
json_str = json_match.group()
|
107 |
+
return json.loads(json_str)
|
108 |
+
else:
|
109 |
+
# Fallback: create simple entities from text
|
110 |
+
words = text.split()
|
111 |
+
entities = []
|
112 |
+
for i, word in enumerate(words[:20]): # Limit to first 20 words
|
113 |
+
if word.istitle() and len(word) > 2:
|
114 |
+
entities.append({"name": word, "type": "CONCEPT", "description": "Extracted entity"})
|
115 |
+
|
116 |
+
return {"entities": entities, "relationships": []}
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
return {"entities": [{"name": "Error", "type": "ERROR", "description": str(e)}], "relationships": []}
|
120 |
+
|
121 |
+
def build_knowledge_graph(entities_data):
|
122 |
+
"""Build and visualize knowledge graph.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
entities_data: Dictionary containing entities and relationships
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
PIL Image object of the knowledge graph
|
129 |
+
"""
|
130 |
+
try:
|
131 |
+
# Create networkx graph
|
132 |
+
G = nx.Graph()
|
133 |
+
|
134 |
+
# Add nodes (entities)
|
135 |
+
entities = entities_data.get("entities", [])
|
136 |
+
for entity in entities:
|
137 |
+
G.add_node(entity["name"],
|
138 |
+
type=entity.get("type", "UNKNOWN"),
|
139 |
+
description=entity.get("description", ""))
|
140 |
+
|
141 |
+
# Add edges (relationships)
|
142 |
+
relationships = entities_data.get("relationships", [])
|
143 |
+
for rel in relationships:
|
144 |
+
if rel["source"] in G.nodes and rel["target"] in G.nodes:
|
145 |
+
G.add_edge(rel["source"], rel["target"],
|
146 |
+
relation=rel.get("relation", "related"),
|
147 |
+
description=rel.get("description", ""))
|
148 |
+
|
149 |
+
# If no relationships found, create some connections between entities
|
150 |
+
if len(relationships) == 0 and len(entities) > 1:
|
151 |
+
entity_names = [e["name"] for e in entities[:10]] # Limit to 10
|
152 |
+
for i in range(len(entity_names) - 1):
|
153 |
+
G.add_edge(entity_names[i], entity_names[i + 1], relation="related")
|
154 |
+
|
155 |
+
# Create visualization
|
156 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
157 |
+
|
158 |
+
# Position nodes using spring layout
|
159 |
+
pos = nx.spring_layout(G, k=2, iterations=50)
|
160 |
+
|
161 |
+
# Color nodes by type
|
162 |
+
node_colors = []
|
163 |
+
type_colors = {
|
164 |
+
"PERSON": "#FF6B6B",
|
165 |
+
"ORG": "#4ECDC4",
|
166 |
+
"LOCATION": "#45B7D1",
|
167 |
+
"CONCEPT": "#96CEB4",
|
168 |
+
"ERROR": "#FF0000",
|
169 |
+
"UNKNOWN": "#DDA0DD"
|
170 |
+
}
|
171 |
+
|
172 |
+
for node in G.nodes():
|
173 |
+
node_type = G.nodes[node].get('type', 'UNKNOWN')
|
174 |
+
node_colors.append(type_colors.get(node_type, "#DDA0DD"))
|
175 |
+
|
176 |
+
# Draw the graph
|
177 |
+
nx.draw(G, pos,
|
178 |
+
node_color=node_colors,
|
179 |
+
node_size=1000,
|
180 |
+
font_size=8,
|
181 |
+
font_weight='bold',
|
182 |
+
with_labels=True,
|
183 |
+
edge_color='gray',
|
184 |
+
width=2,
|
185 |
+
alpha=0.7,
|
186 |
+
ax=ax)
|
187 |
+
|
188 |
+
# Add title
|
189 |
+
ax.set_title("Knowledge Graph", size=16, weight='bold')
|
190 |
+
|
191 |
+
# Add legend
|
192 |
+
legend_elements = []
|
193 |
+
for type_name, color in type_colors.items():
|
194 |
+
if any(G.nodes[node].get('type') == type_name for node in G.nodes()):
|
195 |
+
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
|
196 |
+
markerfacecolor=color, markersize=10, label=type_name))
|
197 |
+
|
198 |
+
if legend_elements:
|
199 |
+
ax.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1.15, 1))
|
200 |
+
|
201 |
+
# Convert to PIL Image
|
202 |
+
fig.canvas.draw()
|
203 |
+
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
204 |
+
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
205 |
+
|
206 |
+
from PIL import Image
|
207 |
+
pil_image = Image.fromarray(img_array)
|
208 |
+
plt.close(fig)
|
209 |
+
|
210 |
+
return pil_image
|
211 |
+
|
212 |
+
except Exception as e:
|
213 |
+
# Create error image
|
214 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
215 |
+
ax.text(0.5, 0.5, f"Error creating graph:\n{str(e)}",
|
216 |
+
ha='center', va='center', fontsize=12, transform=ax.transAxes)
|
217 |
+
ax.set_title("Knowledge Graph Error")
|
218 |
+
ax.axis('off')
|
219 |
+
|
220 |
+
# Convert to PIL Image
|
221 |
+
fig.canvas.draw()
|
222 |
+
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
223 |
+
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
224 |
+
|
225 |
+
from PIL import Image
|
226 |
+
pil_image = Image.fromarray(img_array)
|
227 |
+
plt.close(fig)
|
228 |
+
|
229 |
+
return pil_image
|
230 |
+
|
231 |
+
def knowledge_graph_builder(url_or_text):
|
232 |
+
"""Main function to build knowledge graph from URL or text.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
url_or_text: URL to analyze or direct text input
|
236 |
+
|
237 |
+
Returns:
|
238 |
+
Tuple of (entities_json, graph_image, summary)
|
239 |
+
"""
|
240 |
+
try:
|
241 |
+
# Step 1: Fetch content
|
242 |
+
content = fetch_content(url_or_text)
|
243 |
+
|
244 |
+
if content.startswith("Error"):
|
245 |
+
return content, None, "Failed to fetch content"
|
246 |
+
|
247 |
+
# Step 2: Extract entities
|
248 |
+
entities_data = extract_entities(content)
|
249 |
+
|
250 |
+
# Step 3: Build knowledge graph
|
251 |
+
graph_image = build_knowledge_graph(entities_data)
|
252 |
+
|
253 |
+
# Step 4: Create summary
|
254 |
+
num_entities = len(entities_data.get("entities", []))
|
255 |
+
num_relationships = len(entities_data.get("relationships", []))
|
256 |
+
|
257 |
+
summary = f"""
|
258 |
+
Knowledge Graph Analysis Complete!
|
259 |
+
|
260 |
+
📊 **Statistics:**
|
261 |
+
- Entities found: {num_entities}
|
262 |
+
- Relationships found: {num_relationships}
|
263 |
+
- Content length: {len(content)} characters
|
264 |
+
|
265 |
+
🔍 **Extracted Entities:**
|
266 |
+
"""
|
267 |
+
|
268 |
+
for entity in entities_data.get("entities", [])[:10]: # Show first 10
|
269 |
+
summary += f"\n• **{entity['name']}** ({entity.get('type', 'UNKNOWN')}): {entity.get('description', 'No description')}"
|
270 |
+
|
271 |
+
if len(entities_data.get("entities", [])) > 10:
|
272 |
+
summary += f"\n... and {len(entities_data.get('entities', [])) - 10} more entities"
|
273 |
+
|
274 |
+
return json.dumps(entities_data, indent=2), graph_image, summary
|
275 |
+
|
276 |
+
except Exception as e:
|
277 |
+
return f"Error: {str(e)}", None, "Analysis failed"
|
278 |
+
|
279 |
+
# Create Gradio interface
|
280 |
demo = gr.Interface(
|
281 |
+
fn=knowledge_graph_builder,
|
282 |
+
inputs=[
|
283 |
+
gr.Textbox(
|
284 |
+
label="URL or Text Input",
|
285 |
+
placeholder="Enter a URL (https://example.com) or paste text directly...",
|
286 |
+
lines=3,
|
287 |
+
info="Enter a website URL to analyze, or paste text content directly"
|
288 |
+
)
|
289 |
+
],
|
290 |
+
outputs=[
|
291 |
+
gr.JSON(label="Extracted Entities & Relationships"),
|
292 |
+
gr.Image(label="Knowledge Graph Visualization"),
|
293 |
+
gr.Markdown(label="Analysis Summary")
|
294 |
+
],
|
295 |
+
title="🧠 AI Knowledge Graph Builder",
|
296 |
+
description="""
|
297 |
+
**Transform any text or webpage into an interactive knowledge graph!**
|
298 |
+
|
299 |
+
This tool uses AI to:
|
300 |
+
1. 📖 Extract content from URLs or analyze your text
|
301 |
+
2. 🤖 Use Mistral AI to identify entities and relationships
|
302 |
+
3. 🕸️ Build and visualize knowledge graphs
|
303 |
+
4. 📊 Provide detailed analysis summaries
|
304 |
+
|
305 |
+
**Examples to try:**
|
306 |
+
- News articles: `https://www.bbc.com/news`
|
307 |
+
- Wikipedia pages: `https://en.wikipedia.org/wiki/Artificial_intelligence`
|
308 |
+
- Direct text: Copy and paste any article or document
|
309 |
+
""",
|
310 |
+
examples=[
|
311 |
+
["https://en.wikipedia.org/wiki/Machine_learning"],
|
312 |
+
["Artificial intelligence is transforming the world. Companies like OpenAI, Google, and Microsoft are leading the development of large language models. These models are being used in applications ranging from chatbots to code generation."],
|
313 |
+
["https://www.nature.com/articles/d41586-023-00057-9"]
|
314 |
+
],
|
315 |
+
theme=gr.themes.Soft()
|
316 |
)
|
317 |
|
318 |
demo.launch(mcp_server=True)
|