Spaces:
Sleeping
Sleeping
File size: 11,406 Bytes
b99df01 d44d865 b99df01 d44d865 b99df01 d44d865 b99df01 d44d865 b99df01 d44d865 b99df01 d44d865 b99df01 d44d865 b99df01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import gradio as gr
import os
import json
import requests
from bs4 import BeautifulSoup
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import io
import base64
from huggingface_hub import InferenceClient
import re
from urllib.parse import urlparse
def fetch_content(url_or_text):
"""Fetch content from URL or return text directly.
Args:
url_or_text: Either a URL to fetch content from, or direct text input
Returns:
Extracted text content
"""
# Check if input looks like a URL
parsed = urlparse(url_or_text)
if parsed.scheme in ['http', 'https']:
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url_or_text, headers=headers, timeout=10)
response.raise_for_status()
# Parse HTML and extract text
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
# Get text and clean it up
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text[:5000] # Limit to first 5000 characters
except Exception as e:
return f"Error fetching URL: {str(e)}"
else:
# It's direct text input
return url_or_text
def extract_entities(text):
"""Extract entities and relationships using Mistral.
Args:
text: Input text to analyze
Returns:
Dictionary containing entities and relationships
"""
try:
client = InferenceClient(
provider="together",
api_key=os.environ.get("HF_TOKEN"),
)
prompt = f"""
Analyze the following text and extract:
1. Named entities (people, organizations, locations, concepts)
2. Relationships between these entities
Return the result as a JSON object with this structure:
{{
"entities": [
{{"name": "entity_name", "type": "PERSON|ORG|LOCATION|CONCEPT", "description": "brief description"}}
],
"relationships": [
{{"source": "entity1", "target": "entity2", "relation": "relationship_type", "description": "brief description"}}
]
}}
Text to analyze:
{text[:2000]}
JSON:"""
completion = client.chat.completions.create(
model="mistralai/Mistral-Small-24B-Instruct-2501",
messages=[
{
"role": "user",
"content": prompt
}
],
max_tokens=1500,
temperature=0.3,
)
response_text = completion.choices[0].message.content
# Extract JSON from response
json_match = re.search(r'\{.*\}', response_text, re.DOTALL)
if json_match:
json_str = json_match.group()
return json.loads(json_str)
else:
# Fallback: create simple entities from text
words = text.split()
entities = []
for i, word in enumerate(words[:20]): # Limit to first 20 words
if word.istitle() and len(word) > 2:
entities.append({"name": word, "type": "CONCEPT", "description": "Extracted entity"})
return {"entities": entities, "relationships": []}
except Exception as e:
return {"entities": [{"name": "Error", "type": "ERROR", "description": str(e)}], "relationships": []}
def build_knowledge_graph(entities_data):
"""Build and visualize knowledge graph.
Args:
entities_data: Dictionary containing entities and relationships
Returns:
PIL Image object of the knowledge graph
"""
try:
# Create networkx graph
G = nx.Graph()
# Add nodes (entities)
entities = entities_data.get("entities", [])
for entity in entities:
G.add_node(entity["name"],
type=entity.get("type", "UNKNOWN"),
description=entity.get("description", ""))
# Add edges (relationships)
relationships = entities_data.get("relationships", [])
for rel in relationships:
if rel["source"] in G.nodes and rel["target"] in G.nodes:
G.add_edge(rel["source"], rel["target"],
relation=rel.get("relation", "related"),
description=rel.get("description", ""))
# If no relationships found, create some connections between entities
if len(relationships) == 0 and len(entities) > 1:
entity_names = [e["name"] for e in entities[:10]] # Limit to 10
for i in range(len(entity_names) - 1):
G.add_edge(entity_names[i], entity_names[i + 1], relation="related")
# Create visualization
fig, ax = plt.subplots(figsize=(12, 8))
# Position nodes using spring layout
pos = nx.spring_layout(G, k=2, iterations=50)
# Color nodes by type
node_colors = []
type_colors = {
"PERSON": "#FF6B6B",
"ORG": "#4ECDC4",
"LOCATION": "#45B7D1",
"CONCEPT": "#96CEB4",
"ERROR": "#FF0000",
"UNKNOWN": "#DDA0DD"
}
for node in G.nodes():
node_type = G.nodes[node].get('type', 'UNKNOWN')
node_colors.append(type_colors.get(node_type, "#DDA0DD"))
# Draw the graph
nx.draw(G, pos,
node_color=node_colors,
node_size=1000,
font_size=8,
font_weight='bold',
with_labels=True,
edge_color='gray',
width=2,
alpha=0.7,
ax=ax)
# Add title
ax.set_title("Knowledge Graph", size=16, weight='bold')
# Add legend
legend_elements = []
for type_name, color in type_colors.items():
if any(G.nodes[node].get('type') == type_name for node in G.nodes()):
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
markerfacecolor=color, markersize=10, label=type_name))
if legend_elements:
ax.legend(handles=legend_elements, loc='upper right', bbox_to_anchor=(1.15, 1))
# Convert to PIL Image
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
except Exception as e:
# Create error image
fig, ax = plt.subplots(figsize=(8, 6))
ax.text(0.5, 0.5, f"Error creating graph:\n{str(e)}",
ha='center', va='center', fontsize=12, transform=ax.transAxes)
ax.set_title("Knowledge Graph Error")
ax.axis('off')
# Convert to PIL Image
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
from PIL import Image
pil_image = Image.fromarray(img_array)
plt.close(fig)
return pil_image
def knowledge_graph_builder(url_or_text):
"""Main function to build knowledge graph from URL or text.
Args:
url_or_text: URL to analyze or direct text input
Returns:
Tuple of (entities_json, graph_image, summary)
"""
try:
# Step 1: Fetch content
content = fetch_content(url_or_text)
if content.startswith("Error"):
return content, None, "Failed to fetch content"
# Step 2: Extract entities
entities_data = extract_entities(content)
# Step 3: Build knowledge graph
graph_image = build_knowledge_graph(entities_data)
# Step 4: Create summary
num_entities = len(entities_data.get("entities", []))
num_relationships = len(entities_data.get("relationships", []))
summary = f"""
Knowledge Graph Analysis Complete!
π **Statistics:**
- Entities found: {num_entities}
- Relationships found: {num_relationships}
- Content length: {len(content)} characters
π **Extracted Entities:**
"""
for entity in entities_data.get("entities", [])[:10]: # Show first 10
summary += f"\nβ’ **{entity['name']}** ({entity.get('type', 'UNKNOWN')}): {entity.get('description', 'No description')}"
if len(entities_data.get("entities", [])) > 10:
summary += f"\n... and {len(entities_data.get('entities', [])) - 10} more entities"
return json.dumps(entities_data, indent=2), graph_image, summary
except Exception as e:
return f"Error: {str(e)}", None, "Analysis failed"
# Create Gradio interface
demo = gr.Interface(
fn=knowledge_graph_builder,
inputs=[
gr.Textbox(
label="URL or Text Input",
placeholder="Enter a URL (https://example.com) or paste text directly...",
lines=3,
info="Enter a website URL to analyze, or paste text content directly"
)
],
outputs=[
gr.JSON(label="Extracted Entities & Relationships"),
gr.Image(label="Knowledge Graph Visualization"),
gr.Markdown(label="Analysis Summary")
],
title="π§ AI Knowledge Graph Builder",
description="""
**Transform any text or webpage into an interactive knowledge graph!**
This tool uses AI to:
1. π Extract content from URLs or analyze your text
2. π€ Use Mistral AI to identify entities and relationships
3. πΈοΈ Build and visualize knowledge graphs
4. π Provide detailed analysis summaries
**Examples to try:**
- News articles: `https://www.bbc.com/news`
- Wikipedia pages: `https://en.wikipedia.org/wiki/Artificial_intelligence`
- Direct text: Copy and paste any article or document
""",
examples=[
["https://en.wikipedia.org/wiki/Machine_learning"],
["Artificial intelligence is transforming the world. Companies like OpenAI, Google, and Microsoft are leading the development of large language models. These models are being used in applications ranging from chatbots to code generation."],
["https://www.nature.com/articles/d41586-023-00057-9"]
],
theme=gr.themes.Soft()
)
demo.launch(mcp_server=True)
|