Spaces:
Running
Running
File size: 10,411 Bytes
e178784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import dash
from dash import dcc, html
from dash.dependencies import Input, Output, State
import plotly.graph_objects as go
import numpy as np
from typing import List, Dict, Literal
from tqdm import tqdm
import time
def create_pipeline_figure(schedule: Dict[int, List[Dict]], max_time=None, show_progress=True):
"""
Create a Plotly figure for pipeline parallelism scheduling.
Args:
schedule: Dictionary mapping device IDs to lists of tasks.
Each task is a dictionary with keys:
- 'type': 'forward', 'backward', or 'optimizer'
- 'batch': batch number
- 'start_time': start time of the task
- 'duration': duration of the task
max_time: Optional maximum time to display
show_progress: Whether to show a progress bar
"""
# Colors for task types
forward_color = "royalblue"
backward_color = "sandybrown"
optimizer_color = "#FFEFCF"
empty_color = "whitesmoke"
# Find the number of stages (devices)
num_stages = len(schedule)
# Find the maximum time in the schedule if not provided
if max_time is None:
max_time = 0
for device in schedule:
for task in schedule[device]:
end_time = task["start_time"] + task["duration"]
if end_time > max_time:
max_time = end_time
# Create a figure
fig = go.Figure()
# Initialize progress tracking
total_tasks = sum(len(tasks) for tasks in schedule.values())
tasks_processed = 0
if show_progress:
progress_bar = tqdm(total=total_tasks + num_stages + 3, desc="Creating visualization")
# Add background for empty cells
for device_idx in range(num_stages):
device_idx_reversed = num_stages - device_idx - 1 # Reverse for plotting
fig.add_trace(go.Scatter(
x=[0, max_time],
y=[device_idx_reversed, device_idx_reversed],
mode='lines',
line=dict(color='lightgray', width=0.5),
showlegend=False,
hoverinfo='none'
))
if show_progress:
progress_bar.update(1)
# Add rectangles for each task
for device_idx, device in enumerate(schedule):
device_idx_reversed = num_stages - device_idx - 1
for task in schedule[device]:
# Determine task color and text color
if task["type"] == "forward":
color = forward_color
text_color = "white"
name = "Forward"
elif task["type"] == "backward":
color = backward_color
text_color = "black"
name = "Backward"
else: # optimizer or any other type
color = optimizer_color
text_color = "black"
name = "Optimizer step"
# Add rectangle for the task
start_time = task["start_time"]
duration = task["duration"]
# Create rectangle using shape
fig.add_shape(
type="rect",
x0=start_time,
y0=device_idx_reversed - 0.4,
x1=start_time + duration,
y1=device_idx_reversed + 0.4,
line=dict(color="black", width=0.5),
fillcolor=color,
layer="above",
)
# Add batch number text
fig.add_annotation(
x=start_time + duration / 2,
y=device_idx_reversed,
text=str(task["batch"]),
showarrow=False,
font=dict(color=text_color, size=10, family="Arial, bold"),
)
# Update progress
if show_progress:
tasks_processed += 1
progress_bar.update(1)
# Add custom legend
legend_items = [
dict(name="Forward", color=forward_color),
dict(name="Backward", color=backward_color),
dict(name="Optimizer step", color=optimizer_color)
]
for i, item in enumerate(legend_items):
fig.add_trace(go.Scatter(
x=[None],
y=[None],
mode='markers',
marker=dict(size=10, color=item['color']),
name=item['name'],
showlegend=True
))
if show_progress and i < len(legend_items) - 1:
progress_bar.update(1)
# Set axis properties
device_labels = [f"Device {i+1}" for i in range(num_stages)]
device_labels.reverse() # Reverse to put Device 1 at the top
fig.update_layout(
xaxis=dict(
showticklabels=False,
showgrid=False,
zeroline=False,
title="Time →",
range=[0, max_time + 0.5]
),
yaxis=dict(
tickmode="array",
tickvals=list(range(num_stages)),
ticktext=device_labels,
showgrid=False,
zeroline=False,
range=[-0.5, num_stages - 0.5]
),
margin=dict(l=50, r=50, t=50, b=50),
plot_bgcolor="white",
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5
)
)
if show_progress:
progress_bar.update(1) # Final update for layout
progress_bar.close()
return fig
def create_dash_app(schedule: Dict[int, List[Dict]], schedule_type="1f1b"):
"""
Create a Dash app for interactive visualization of pipeline scheduling.
Args:
schedule: Dictionary mapping device IDs to lists of tasks
schedule_type: Type of scheduling algorithm used
"""
app = dash.Dash(__name__, title="Pipeline Parallelism Visualization")
app.layout = html.Div([
html.H1(f"Pipeline Parallelism Visualization ({schedule_type.upper()})",
style={'textAlign': 'center'}),
html.Div(id="loading-container", children=[
dcc.Loading(
id="loading-graph",
type="circle",
children=[
html.Div(id="graph-container", children=[
dcc.Graph(
id='pipeline-graph',
style={'height': '600px'}
)
])
]
)
]),
html.Div([
html.Button("Download PNG", id="btn-download",
style={'margin': '10px'}),
dcc.Download(id="download-image")
], style={'textAlign': 'center', 'marginTop': '20px'})
])
@app.callback(
Output("pipeline-graph", "figure"),
Input("graph-container", "children"),
prevent_initial_call=False,
)
def load_graph(_):
# Create the figure when the app loads
return create_pipeline_figure(schedule, show_progress=True)
@app.callback(
Output("download-image", "data"),
Input("btn-download", "n_clicks"),
prevent_initial_call=True,
)
def download_image(n_clicks):
# Show progress in terminal for downloads
fig = create_pipeline_figure(schedule, show_progress=True)
img_bytes = fig.to_image(format="png", scale=3)
return dict(
content=img_bytes,
filename="pipeline_visualization.png"
)
return app
def visualize_pipeline_parallelism_dash(
schedule: Dict[int, List[Dict]],
schedule_type: Literal["simple", "1f1b"] = "1f1b",
port: int = 8050,
debug: bool = False
):
"""
Create an interactive Dash visualization for pipeline parallelism scheduling.
Args:
schedule: Dictionary mapping device IDs to lists of tasks
schedule_type: Type of scheduling algorithm used ("simple" or "1f1b")
port: Port number to run the Dash app
debug: Whether to run the app in debug mode
"""
app = create_dash_app(schedule, schedule_type)
print(f"Starting Dash app on http://localhost:{port}/")
app.run_server(debug=debug, port=port)
def save_pipeline_visualization_plotly(
schedule: Dict[int, List[Dict]],
schedule_type: Literal["simple", "1f1b"] = "1f1b",
output_file: str = "pipeline_visualization_plotly.png",
):
"""
Save a static Plotly visualization of pipeline parallelism scheduling.
Args:
schedule: Dictionary mapping device IDs to lists of tasks
schedule_type: Type of scheduling algorithm used
output_file: Path to save the visualization
"""
print(f"Creating visualization for {len(schedule)} devices...")
fig = create_pipeline_figure(schedule, show_progress=True)
# Update layout for static image
fig.update_layout(
title=f"Pipeline Parallelism Visualization ({schedule_type.upper()})",
title_x=0.5
)
print(f"Saving image to {output_file}...")
# Save as image
fig.write_image(output_file, scale=3)
print(f"Visualization saved to {output_file}")
if __name__ == "__main__":
# Example usage
import argparse
from pipeline import create_1f1b_schedule
parser = argparse.ArgumentParser(description="Pipeline Parallelism Visualizer")
parser.add_argument("--num-stages", type=int, default=4, help="Number of pipeline stages")
parser.add_argument("--num-batches", type=int, default=8, help="Number of microbatches")
parser.add_argument("--interactive", action="store_true", help="Run interactive Dash app")
parser.add_argument("--port", type=int, default=8050, help="Port for Dash app")
parser.add_argument("--output", type=str, default="pipeline_visualization_plotly.png", help="Output file for static image")
args = parser.parse_args()
# Create an example schedule
forward_times = [1.0] * args.num_stages
backward_times = [2.0] * args.num_stages
schedule = create_1f1b_schedule(
num_stages=args.num_stages,
num_batches=args.num_batches,
forward_times=forward_times,
backward_times=backward_times,
)
if args.interactive:
visualize_pipeline_parallelism_dash(schedule, port=args.port)
else:
save_pipeline_visualization_plotly(schedule, output_file=args.output) |