Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import os | |
from utils import call | |
from diffusers import ( | |
DDPMScheduler, | |
DDIMScheduler, | |
PNDMScheduler, | |
LMSDiscreteScheduler, | |
EulerAncestralDiscreteScheduler, | |
EulerDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
) | |
from diffusers.pipelines import StableDiffusionXLPipeline | |
StableDiffusionXLPipeline.__call__ = call | |
import os | |
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV | |
from trainscripts.textsliders.demotrain import train_xl | |
os.environ['CURL_CA_BUNDLE'] = '' | |
model_map = { | |
'年龄调整': 'models/age.pt', | |
'体型丰满': 'models/chubby.pt', | |
'肌肉感': 'models/muscular.pt', | |
'惊讶表情': 'models/suprised_look.pt', | |
'微笑': 'models/smiling.pt', | |
'职业感': 'models/professional.pt', | |
'长发': 'models/long_hair.pt', | |
'卷发': 'models/curlyhair.pt', | |
'Pixar风格': 'models/pixar_style.pt', | |
'雕塑风格': 'models/sculpture_style.pt', | |
'陶土风格': 'models/clay_style.pt', | |
'修复图像': 'models/repair_slider.pt', | |
'修复手部': 'models/fix_hands.pt', | |
'杂乱房间': 'models/cluttered_room.pt', | |
'阴暗天气': 'models/dark_weather.pt', | |
'节日氛围': 'models/festive.pt', | |
'热带天气': 'models/tropical_weather.pt', | |
'冬季天气': 'models/winter_weather.pt', | |
'弯眉': 'models/eyebrow.pt', | |
'眼睛大小 (使用刻度 -3, -1, 1, 3)': 'models/eyesize.pt', | |
} | |
ORIGINAL_SPACE_ID = 'baulab/ConceptSliders' | |
SPACE_ID = os.getenv('SPACE_ID') | |
SHARED_UI_WARNING = f'''## 注意 - 在此共享UI中训练可能会很慢。您可以选择复制并使用至少40GB GPU的设备,或克隆此存储库以在自己的机器上运行。 | |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-复制空间-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="复制空间"></a></center> | |
''' | |
def merge_lora_networks(networks): | |
if not networks: | |
return None | |
base_network = networks[0] | |
for network in networks[1:]: | |
for name, param in network.named_parameters(): | |
if name in base_network.state_dict(): | |
base_network.state_dict()[name].add_(param) | |
else: | |
base_network.state_dict()[name] = param.clone() | |
return base_network | |
# 修改 call 方法以支持传递 networks 参数 | |
# def rw_sd_call(self, *args, networks=None, scales=None, **kwargs): | |
# if networks is not None and scales is not None: | |
# for network, scale in zip(networks, scales): | |
# for name, param in network.named_parameters(): | |
# if name in self.unet.state_dict(): | |
# self.unet.state_dict()[name].add_(param * scale) | |
# else: | |
# self.unet.state_dict()[name] = param.clone() * scale | |
# return self.__original_call__(*args, **kwargs) | |
# StableDiffusionXLPipeline.__original_call__ = StableDiffusionXLPipeline.__call__ | |
# StableDiffusionXLPipeline.__call__ = rw_sd_call | |
class Demo: | |
def __init__(self) -> None: | |
self.training = False | |
self.generating = False | |
self.weight_dtype = torch.bfloat16 | |
self.model_sections = [] | |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0' | |
if torch.cuda.is_available(): | |
self.device = 'cuda' | |
else: | |
self.device = 'cpu' | |
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device) | |
pipe = None | |
del pipe | |
torch.cuda.empty_cache() | |
model_id = "stabilityai/sdxl-turbo" | |
self.current_model = 'SDXL Turbo' | |
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device) | |
if torch.cuda.is_available(): | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.guidance_scale = 1 | |
self.num_inference_steps = 3 | |
self.seed = 42753 # 默认种子值 | |
with gr.Blocks() as demo: | |
self.layout() | |
demo.queue(max_size=5).launch(share=True, max_threads=2) | |
def layout(self): | |
# with gr.Row(): | |
# if SPACE_ID == ORIGINAL_SPACE_ID: | |
# self.warning = gr.Markdown(SHARED_UI_WARNING) | |
# with gr.Row(): | |
with gr.Tab("测试") as inference_column: | |
with gr.Row(): | |
self.explain_infr = gr.Markdown(value='这是[概念滑块:用于扩散模型的LoRA适配器](https://sliders.baulab.info/)的演示。要尝试可以控制特定概念的模型,请选择一个模型并输入任何提示词,选择一个种子值,最后选择SDEdit时间步以保持结构。较高的SDEdit时间步会导致更多的结构变化。例如,如果选择“惊讶表情”模型,可以生成提示词“A picture of a person, realistic, 8k”的图像,并将滑块效果与原始模型生成的图像进行比较。我们还提供了几个其他预先微调的模型,如“修复”滑块,用于修复SDXL生成图像中的缺陷(请查看“预训练滑块”下拉菜单)。您还可以训练和运行自己的自定义滑块。请查看“训练”部分以进行自定义概念滑块训练。<b>当前推理正在运行SDXL Turbo!</b>') | |
with gr.Row(): | |
self.prompt_input_infr = gr.Text( | |
placeholder="photo of a person, with bokeh street background, realistic, 8k", | |
label="提示词", | |
info="生成图像的提示词", | |
value="photo of a person, with bokeh street background, realistic, 8k" | |
) | |
for model_name in model_map.keys(): | |
with gr.Row(): | |
model_checkbox = gr.Checkbox(label=model_name, value=False) | |
slider_scale_infr = gr.Slider(-4, 4, label="滑块刻度", value=3, info="较大的滑块刻度会导致更强的编辑效果") | |
self.model_sections.append(((model_checkbox.label, model_checkbox.value), slider_scale_infr.value)) | |
# 添加复选框的change事件处理程序 | |
model_checkbox.change( | |
fn=self.update_model_sections, | |
inputs=[gr.Text(value=f"{model_checkbox.label}"), model_checkbox, slider_scale_infr], | |
outputs=[] | |
) | |
with gr.Row(): | |
self.seed_infr = gr.Number(label="种子值", value=self.seed) | |
self.start_noise_infr = gr.Slider( | |
600, 900, | |
value=750, | |
label="SDEdit时间步", | |
info="选择较小的值以保持更多结构" | |
) | |
self.model_type = gr.Dropdown( | |
label="模型", | |
choices=['SDXL Turbo', 'SDXL'], | |
value='SDXL Turbo', | |
interactive=True | |
) | |
with gr.Row(): | |
self.infr_button = gr.Button( | |
value="生成", | |
interactive=True | |
) | |
with gr.Row(): | |
self.image_orig = gr.Image( | |
label="原始SD", | |
interactive=False, | |
type='pil', | |
) | |
self.image_new = gr.Image( | |
label=f"概念滑块", | |
interactive=False, | |
type='pil', | |
) | |
with gr.Tab("训练") as training_column: | |
with gr.Row(): | |
self.explain_train= gr.Markdown(value='在这一部分,您可以为Stable Diffusion XL训练文本概念滑块。输入您希望进行编辑的目标概念(例如:人)。接下来,输入您希望编辑的属性的增强提示词(例如:控制人的年龄,输入“person, old”)。然后,输入属性的抑制提示词(例如:输入“person, young”)。然后按“训练”按钮。使用默认设置,训练一个滑块大约需要25分钟;然后您可以在上面的“测试”选项卡中尝试推理或下载权重。为了更快的训练,请复制此存储库并使用A100或更大的GPU进行训练。代码和详细信息在[github链接](https://github.com/rohitgandikota/sliders)。') | |
with gr.Row(): | |
with gr.Column(scale=3): | |
self.target_concept = gr.Text( | |
placeholder="输入要进行编辑的目标概念...", | |
label="编辑概念的提示词", | |
info="对应于要编辑的概念的提示词(例如:“person”)", | |
value = '' | |
) | |
self.positive_prompt = gr.Text( | |
placeholder="输入编辑的增强提示词...", | |
label="增强提示词", | |
info="对应于要增强的概念的提示词(例如:“person, old”)", | |
value = '' | |
) | |
self.negative_prompt = gr.Text( | |
placeholder="输入编辑的抑制提示词...", | |
label="抑制提示词", | |
info="对应于要抑制的概念的提示词(例如:“person, young”)", | |
value = '' | |
) | |
self.attributes_input = gr.Text( | |
placeholder="输入要保留的概念(用逗号分隔)。如果不需要,请留空...", | |
label="要保留的概念", | |
info="要保留/解缠的概念(例如:“male, female”)", | |
value = '' | |
) | |
self.is_person = gr.Checkbox( | |
label="人", | |
info="您是否在为人训练滑块?") | |
self.rank = gr.Number( | |
value=4, | |
label="滑块等级", | |
info='要训练的滑块等级' | |
) | |
choices = ['xattn', 'noxattn'] | |
self.train_method_input = gr.Dropdown( | |
choices=choices, | |
value='xattn', | |
label='训练方法', | |
info='训练方法。如果[* xattn *] - loras将仅在交叉注意层上。如果[* noxattn *](官方实现) - 除交叉注意层外的所有层', | |
interactive=True | |
) | |
self.iterations_input = gr.Number( | |
value=500, | |
precision=0, | |
label="迭代次数", | |
info='用于训练的迭代次数 - 最大为1000' | |
) | |
self.lr_input = gr.Number( | |
value=2e-4, | |
label="学习率", | |
info='用于训练的学习率' | |
) | |
with gr.Column(scale=1): | |
self.train_status = gr.Button(value='', variant='primary', interactive=False) | |
self.train_button = gr.Button( | |
value="训练", | |
) | |
self.download = gr.Files() | |
self.model_dropdown = gr.Dropdown(choices=list(model_map.keys())) | |
self.infr_button.click(self.inference, inputs=[ | |
self.prompt_input_infr, | |
self.start_noise_infr, | |
self.model_type, | |
self.seed_infr | |
], | |
outputs=[ | |
self.image_new, | |
self.image_orig | |
] | |
) | |
self.train_button.click(self.train, inputs = [ | |
self.target_concept, | |
self.positive_prompt, | |
self.negative_prompt, | |
self.rank, | |
self.iterations_input, | |
self.lr_input, | |
self.attributes_input, | |
self.is_person, | |
self.train_method_input | |
], | |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown] | |
) | |
def update_model_sections(self, label, checkbox, scale): | |
for i, section in enumerate(self.model_sections): | |
if section[0][0] == label: | |
self.model_sections[i] = ((label, checkbox), scale) | |
break | |
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)): | |
iterations_input = min(int(iterations_input),1000) | |
if attributes_input == '': | |
attributes_input = None | |
print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person) | |
randn = torch.randint(1, 10000000, (1,)).item() | |
save_name = f"{randn}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:20]}" | |
save_name += f'_alpha-{1}' | |
save_name += f'_{train_method_input}' | |
save_name += f'_rank_{int(rank)}.pt' | |
# if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40: | |
# return [gr.update(interactive=True, value='Train'), gr.update(value='GPU Memory is not enough for training... Please upgrade to GPU atleast 40GB or clone the repo to your local machine.'), None, gr.update()] | |
if self.training: | |
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()] | |
attributes = attributes_input | |
if is_person: | |
attributes = 'white, black, asian, hispanic, indian, male, female' | |
self.training = True | |
train_xl(target=target_concept, positive=positive_prompt, negative=negative_prompt, lr=lr_input, iterations=iterations_input, config_file='trainscripts/textsliders/data/config-xl.yaml', rank=int(rank), train_method=train_method_input, device=self.device, attributes=attributes, save_name=save_name) | |
self.training = False | |
torch.cuda.empty_cache() | |
model_map[save_name.replace('.pt','')] = f'models/{save_name}' | |
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))] | |
def get_selected_models(self): | |
# 过滤出被选中的模型数据 | |
selected = [ | |
(section[0][0], section[1]) # (label, scale) | |
for section in self.model_sections | |
if section[0][1] # 检查 checkbox value 是否为 True | |
] | |
if selected: | |
# 解包成两个数组 | |
labels, scales = zip(*selected) | |
return list(labels), list(scales) | |
else: | |
return [], [] | |
def inference(self, prompt, start_noise, model, seed, pbar=gr.Progress(track_tqdm=True)): | |
self.seed = seed # 更新种子值 | |
result = self.get_selected_models() | |
print(111, self.model_sections) | |
model_names, scale_list = result | |
print(222, model_names, scale_list) | |
if self.current_model != model: | |
if model=='SDXL Turbo': | |
model_id = "stabilityai/sdxl-turbo" | |
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device) | |
if torch.cuda.is_available(): | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.guidance_scale = 1 | |
self.num_inference_steps = 3 | |
self.current_model = 'SDXL Turbo' | |
else: | |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0' | |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device) | |
if torch.cuda.is_available(): | |
self.pipe.enable_xformers_memory_efficient_attention() | |
self.guidance_scale = 7.5 | |
self.num_inference_steps = 20 | |
self.current_model = 'SDXL' | |
networks = [] | |
for model_name in model_names: | |
model_path = model_map[model_name] | |
unet = self.pipe.unet | |
network_type = "c3lier" | |
if 'full' in model_path: | |
train_method = 'full' | |
elif 'noxattn' in model_path: | |
train_method = 'noxattn' | |
elif 'xattn' in model_path: | |
train_method = 'xattn' | |
network_type = 'lierla' | |
else: | |
train_method = 'noxattn' | |
modules = DEFAULT_TARGET_REPLACE | |
if network_type == "c3lier": | |
modules += UNET_TARGET_REPLACE_MODULE_CONV | |
name = os.path.basename(model_path) | |
rank = 4 | |
alpha = 1 | |
if 'rank' in model_path: | |
rank = int(float(model_path.split('_')[-1].replace('.pt',''))) | |
if 'alpha1' in model_path: | |
alpha = 1.0 | |
network = LoRANetwork( | |
unet, | |
rank=rank, | |
multiplier=1.0, | |
alpha=alpha, | |
train_method=train_method, | |
).to(self.device, dtype=self.weight_dtype) | |
network.load_state_dict(torch.load(model_path, weights_only=True)) | |
networks.append(network) | |
# 设置种子 | |
generator = torch.manual_seed(self.seed) | |
# 生成编辑后的图像(应用多权重) | |
edited_image = self.pipe( | |
prompt, | |
num_images_per_prompt=1, | |
num_inference_steps=self.num_inference_steps, | |
generator=generator, | |
networks=networks, # 加载多个 LoRA 模型 | |
start_noise=int(start_noise), | |
scales=scale_list, # 设置每个 LoRA 的权重 | |
unet=unet, | |
guidance_scale=self.guidance_scale | |
).images[0] | |
# 生成原始图像(不应用权重) | |
generator = torch.manual_seed(self.seed) | |
original_image = self.pipe( | |
prompt, | |
num_images_per_prompt=1, | |
num_inference_steps=self.num_inference_steps, | |
generator=generator, | |
networks=networks, | |
start_noise=int(start_noise), | |
scales=[0] * len(networks), # 不设置任何权重 | |
unet=unet, | |
guidance_scale=self.guidance_scale | |
).images[0] | |
del unet, networks | |
unet = None | |
networks = None | |
torch.cuda.empty_cache() | |
return edited_image, original_image | |
demo = Demo() | |