Ripefog's picture
Upload 38 files
79f1966 verified
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import time
import pandas as pd
import plotly.express as px
import os
# Streamlit Config
st.set_page_config(
page_title="Knowledge Distillation - Model Comparison - Weather Phenomena Prediction",
page_icon="./static/aivn_favicon.png",
layout="wide",
initial_sidebar_state="expanded"
)
# Add logo
st.image("./static/aivn_logo.png", width=300)
# Set seed
SEED = 42
torch.manual_seed(SEED)
# Image Transformation
def transform(img, img_size=(224, 224)):
img = img.resize(img_size)
img = np.array(img)[..., :3]
img = torch.tensor(img).permute(2, 0, 1).float()
normalized_img = img / 255.0
return normalized_img.unsqueeze(0)
# Classes
classes = {0: 'dew',
1: 'fogsmog',
2: 'frost',
3: 'glaze',
4: 'hail',
5: 'lightning',
6: 'rain',
7: 'rainbow',
8: 'rime',
9: 'sandstorm',
10: 'snow'}
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_channels, out_channels,
kernel_size=3, stride=stride, padding=1
)
self.batch_norm1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(
out_channels, out_channels,
kernel_size=3, stride=1, padding=1
)
self.batch_norm2 = nn.BatchNorm2d(out_channels)
self.downsample = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.downsample = nn.Sequential(
nn.Conv2d(
in_channels, out_channels,
kernel_size=1, stride=stride
),
nn.BatchNorm2d(out_channels)
)
self.relu = nn.ReLU()
def forward(self, x):
shortcut = x.clone()
x = self.conv1(x)
x = self.batch_norm1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.batch_norm2(x)
x += self.downsample(shortcut)
x = self.relu(x)
return x
class ResNet(nn.Module):
def __init__(self, residual_block, n_blocks_lst, n_classes):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.batch_norm1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = self.create_layer(
residual_block, 64, 64, n_blocks_lst[0], 1)
self.conv3 = self.create_layer(
residual_block, 64, 128, n_blocks_lst[1], 2)
self.conv4 = self.create_layer(
residual_block, 128, 256, n_blocks_lst[2], 2)
self.conv5 = self.create_layer(
residual_block, 256, 512, n_blocks_lst[3], 2)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(512, n_classes)
def create_layer(self, residual_block, in_channels, out_channels, n_blocks, stride):
blocks = []
first_block = residual_block(in_channels, out_channels, stride)
blocks.append(first_block)
for idx in range(1, n_blocks):
block = residual_block(out_channels, out_channels, stride=1)
blocks.append(block)
block_sequential = nn.Sequential(*blocks)
return block_sequential
def forward(self, x):
x = self.conv1(x)
x = self.batch_norm1(x)
x = self.maxpool(x)
x = self.relu(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc1(x)
return x
# Load Model
n_classes = len(classes)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# KD Student
model_1 = ResNet(
residual_block=ResidualBlock,
n_blocks_lst=[2, 2, 2, 2],
n_classes=n_classes
).to(device)
model_1.load_state_dict(torch.load(
"./model/kdsamedata_wt.pt", map_location=device))
model_1.eval()
# Teacher
model_2 = ResNet(
residual_block=ResidualBlock,
n_blocks_lst=[3, 4, 6, 3],
n_classes=n_classes
).to(device)
model_2.load_state_dict(torch.load(
"./model/teacher_wt.pt", map_location=device))
model_2.eval()
# Streamlit App Logic
st.title("Weather Phenomena Prediction - Model Comparison")
# Predefined image sets
image_sets = {
"Set 5 images": "./static/set5",
"Set 10 images": "./static/set10",
"Set 15 images": "./static/set15"
}
st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
# Option to use predefined image set
st.subheader("Select Predefined Image Set or Upload Your Own Images")
use_predefined_set = st.radio("Choose an option:", ["Predefined Set", "Upload Images"])
if use_predefined_set == "Predefined Set":
selected_set = st.selectbox("Choose a predefined set:", list(image_sets.keys()))
image_folder = image_sets[selected_set]
image_paths = [os.path.join(image_folder, img) for img in os.listdir(image_folder) if img.endswith(('jpg', 'jpeg', 'png'))]
images = [Image.open(img_path) for img_path in image_paths]
else:
uploaded_files = st.file_uploader("Upload Images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
images = [Image.open(img) for img in uploaded_files] if uploaded_files else []
st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
if images:
st.write(f"**Number of images:** {len(images)}")
# Display images in a grid
st.subheader("Image Set Preview:")
cols = st.columns(5)
for idx, img in enumerate(images):
with cols[idx % 5]:
st.image(img, use_container_width=True, caption=f"Image {idx + 1}")
results = []
total_time_1, total_time_2 = 0, 0
with st.spinner("Running Predictions..."):
for idx, img in enumerate(images):
input_tensor = transform(img).to(device)
# Predictions for KD Student
start_time_1 = time.time()
with torch.no_grad():
output_1 = model_1(input_tensor)
_, predicted_class_1 = torch.max(output_1, 1)
end_time_1 = time.time()
predicted_label_1 = classes[predicted_class_1.item()]
time_1 = end_time_1 - start_time_1
total_time_1 += time_1
# Predictions for Teacher
start_time_2 = time.time()
with torch.no_grad():
output_2 = model_2(input_tensor)
_, predicted_class_2 = torch.max(output_2, 1)
end_time_2 = time.time()
predicted_label_2 = classes[predicted_class_2.item()]
time_2 = end_time_2 - start_time_2
total_time_2 += time_2
# Store results
results.append({
"Image": f"Image {idx + 1}",
"Model": "KD Student",
"Prediction": predicted_label_1,
"Time Taken (s)": time_1
})
results.append({
"Image": f"Image {idx + 1}",
"Model": "Teacher",
"Prediction": predicted_label_2,
"Time Taken (s)": time_2
})
# Create a DataFrame for results
results_df = pd.DataFrame(results)
st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
# Display results in a table
st.subheader("Prediction Results:")
results_kd = results_df[results_df["Model"] == "KD Student"]
results_teacher = results_df[results_df["Model"] == "Teacher"]
# Chia cột
col1, col2 = st.columns([0.5, 0.5]) # Tỷ lệ cột 50-50, tùy chỉnh nếu cần
# Hiển thị bảng trong từng cột
with col1:
st.write("**KD Student Results**")
st.dataframe(results_kd)
with col2:
st.write("**Teacher Results**")
st.dataframe(results_teacher)
st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
# Charts
st.subheader("Comparison Charts:")
col1, col2 = st.columns([0.3, 0.7])
with col1:
# Total time chart
total_times_df = pd.DataFrame({
"Model": ["KD Student", "Teacher"],
"Total Time (s)": [total_time_1, total_time_2]
})
total_fig = px.bar(
total_times_df,
x="Model",
y="Total Time (s)",
text="Total Time (s)",
title="Total Time Comparison",
labels={"Total Time (s)": "Time (seconds)"}
)
total_fig.update_traces(texttemplate='%{text:.4f}', textposition='outside')
st.plotly_chart(total_fig, use_container_width=True)
with col2:
# Per-image time chart
fig = px.bar(
results_df,
x="Image",
y="Time Taken (s)",
color="Model",
barmode="group",
title="Time Comparison for Each Image",
labels={"Time Taken (s)": "Time (seconds)"}
)
st.plotly_chart(fig, use_container_width=True)
# Footer
st.markdown(
"""
<style>
.footer {
position: fixed;
bottom: 0;
left: 0;
width: 100%;
background-color: #f1f1f1;
text-align: center;
padding: 10px 0;
font-size: 14px;
color: #555;
}
</style>
<div class="footer">
2024 AI VIETNAM | Made by <a href="https://github.com/Koii2k3" target="_blank">Koii2k3</a>
</div>
""",
unsafe_allow_html=True
)