File size: 9,747 Bytes
79f1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import time
import pandas as pd
import plotly.express as px
import os

# Streamlit Config
st.set_page_config(
    page_title="Knowledge Distillation - Model Comparison - Weather Phenomena Prediction",
    page_icon="./static/aivn_favicon.png",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Add logo
st.image("./static/aivn_logo.png", width=300)

# Set seed
SEED = 42
torch.manual_seed(SEED)

# Image Transformation
def transform(img, img_size=(224, 224)):
    img = img.resize(img_size)
    img = np.array(img)[..., :3]
    img = torch.tensor(img).permute(2, 0, 1).float()
    normalized_img = img / 255.0
    return normalized_img.unsqueeze(0)

# Classes
classes = {0: 'dew',
           1: 'fogsmog',
           2: 'frost',
           3: 'glaze',
           4: 'hail',
           5: 'lightning',
           6: 'rain',
           7: 'rainbow',
           8: 'rime',
           9: 'sandstorm',
           10: 'snow'}


class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            in_channels, out_channels,
            kernel_size=3, stride=stride, padding=1
        )
        self.batch_norm1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(
            out_channels, out_channels,
            kernel_size=3, stride=1, padding=1
        )
        self.batch_norm2 = nn.BatchNorm2d(out_channels)

        self.downsample = nn.Sequential()
        if stride != 1 or in_channels != out_channels:
            self.downsample = nn.Sequential(
                nn.Conv2d(
                    in_channels, out_channels,
                    kernel_size=1, stride=stride
                ),
                nn.BatchNorm2d(out_channels)
            )
        self.relu = nn.ReLU()

    def forward(self, x):
        shortcut = x.clone()
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.batch_norm2(x)
        x += self.downsample(shortcut)
        x = self.relu(x)

        return x


class ResNet(nn.Module):
    def __init__(self, residual_block, n_blocks_lst, n_classes):
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.batch_norm1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.conv2 = self.create_layer(
            residual_block, 64, 64, n_blocks_lst[0], 1)
        self.conv3 = self.create_layer(
            residual_block, 64, 128, n_blocks_lst[1], 2)
        self.conv4 = self.create_layer(
            residual_block, 128, 256, n_blocks_lst[2], 2)
        self.conv5 = self.create_layer(
            residual_block, 256, 512, n_blocks_lst[3], 2)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(512, n_classes)

    def create_layer(self, residual_block, in_channels, out_channels, n_blocks, stride):
        blocks = []
        first_block = residual_block(in_channels, out_channels, stride)
        blocks.append(first_block)

        for idx in range(1, n_blocks):
            block = residual_block(out_channels, out_channels, stride=1)
            blocks.append(block)

        block_sequential = nn.Sequential(*blocks)

        return block_sequential

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm1(x)
        x = self.maxpool(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.avgpool(x)
        x = self.flatten(x)
        x = self.fc1(x)

        return x


# Load Model
n_classes = len(classes)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# KD Student
model_1 = ResNet(
    residual_block=ResidualBlock,
    n_blocks_lst=[2, 2, 2, 2],
    n_classes=n_classes
).to(device)
model_1.load_state_dict(torch.load(
    "./model/kdsamedata_wt.pt", map_location=device))
model_1.eval()

# Teacher
model_2 = ResNet(
    residual_block=ResidualBlock,
    n_blocks_lst=[3, 4, 6, 3],
    n_classes=n_classes
).to(device)
model_2.load_state_dict(torch.load(
    "./model/teacher_wt.pt", map_location=device))
model_2.eval()

# Streamlit App Logic
st.title("Weather Phenomena Prediction - Model Comparison")

# Predefined image sets
image_sets = {
    "Set 5 images": "./static/set5",
    "Set 10 images": "./static/set10",
    "Set 15 images": "./static/set15" 
}
st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
# Option to use predefined image set
st.subheader("Select Predefined Image Set or Upload Your Own Images")
use_predefined_set = st.radio("Choose an option:", ["Predefined Set", "Upload Images"])

if use_predefined_set == "Predefined Set":
    selected_set = st.selectbox("Choose a predefined set:", list(image_sets.keys()))
    image_folder = image_sets[selected_set]
    image_paths = [os.path.join(image_folder, img) for img in os.listdir(image_folder) if img.endswith(('jpg', 'jpeg', 'png'))]
    images = [Image.open(img_path) for img_path in image_paths]
else:
    uploaded_files = st.file_uploader("Upload Images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
    images = [Image.open(img) for img in uploaded_files] if uploaded_files else []

st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
if images:
    st.write(f"**Number of images:** {len(images)}")

    # Display images in a grid
    st.subheader("Image Set Preview:")
    cols = st.columns(5)
    for idx, img in enumerate(images):
        with cols[idx % 5]:
            st.image(img, use_container_width=True, caption=f"Image {idx + 1}")

    results = []
    total_time_1, total_time_2 = 0, 0

    with st.spinner("Running Predictions..."):
        for idx, img in enumerate(images):
            input_tensor = transform(img).to(device)

            # Predictions for KD Student
            start_time_1 = time.time()
            with torch.no_grad():
                output_1 = model_1(input_tensor)
                _, predicted_class_1 = torch.max(output_1, 1)
            end_time_1 = time.time()
            predicted_label_1 = classes[predicted_class_1.item()]
            time_1 = end_time_1 - start_time_1
            total_time_1 += time_1

            # Predictions for Teacher
            start_time_2 = time.time()
            with torch.no_grad():
                output_2 = model_2(input_tensor)
                _, predicted_class_2 = torch.max(output_2, 1)
            end_time_2 = time.time()
            predicted_label_2 = classes[predicted_class_2.item()]
            time_2 = end_time_2 - start_time_2
            total_time_2 += time_2

            # Store results
            results.append({
                "Image": f"Image {idx + 1}",
                "Model": "KD Student",
                "Prediction": predicted_label_1,
                "Time Taken (s)": time_1
            })
            results.append({
                "Image": f"Image {idx + 1}",
                "Model": "Teacher",
                "Prediction": predicted_label_2,
                "Time Taken (s)": time_2
            })

    # Create a DataFrame for results
    results_df = pd.DataFrame(results)

    st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
    # Display results in a table
    st.subheader("Prediction Results:")
    results_kd = results_df[results_df["Model"] == "KD Student"]
    results_teacher = results_df[results_df["Model"] == "Teacher"]

    # Chia cột
    col1, col2 = st.columns([0.5, 0.5])  # Tỷ lệ cột 50-50, tùy chỉnh nếu cần

    # Hiển thị bảng trong từng cột
    with col1:
        st.write("**KD Student Results**")
        st.dataframe(results_kd)

    with col2:
        st.write("**Teacher Results**")
        st.dataframe(results_teacher)

    st.markdown("<hr style='border: 1px solid #ccc; margin: 20px 0;'>", unsafe_allow_html=True)
    # Charts
    st.subheader("Comparison Charts:")
    col1, col2 = st.columns([0.3, 0.7])

    with col1:
        # Total time chart
        total_times_df = pd.DataFrame({
            "Model": ["KD Student", "Teacher"],
            "Total Time (s)": [total_time_1, total_time_2]
        })
        total_fig = px.bar(
            total_times_df,
            x="Model",
            y="Total Time (s)",
            text="Total Time (s)",
            title="Total Time Comparison",
            labels={"Total Time (s)": "Time (seconds)"}
        )
        total_fig.update_traces(texttemplate='%{text:.4f}', textposition='outside')
        st.plotly_chart(total_fig, use_container_width=True)

    with col2:
        # Per-image time chart
        fig = px.bar(
            results_df,
            x="Image",
            y="Time Taken (s)",
            color="Model",
            barmode="group",
            title="Time Comparison for Each Image",
            labels={"Time Taken (s)": "Time (seconds)"}
        )
        st.plotly_chart(fig, use_container_width=True)

# Footer
st.markdown(
    """
    <style>
    .footer {
        position: fixed;
        bottom: 0;
        left: 0;
        width: 100%;
        background-color: #f1f1f1;
        text-align: center;
        padding: 10px 0;
        font-size: 14px;
        color: #555;
    }
    </style>
    <div class="footer">
        2024 AI VIETNAM | Made by <a href="https://github.com/Koii2k3" target="_blank">Koii2k3</a>
    </div>
    """,
    unsafe_allow_html=True
)