Spaces:
Runtime error
Runtime error
from datasets import load_dataset | |
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments | |
from sklearn.metrics import classification_report | |
import torch | |
# Load few-shot dataset | |
dataset = load_dataset("ai4bharat/sangraha") | |
train_data = dataset["train"].select(range(30)) | |
test_data = dataset["validation"].select(range(10)) | |
# Tokenizer and preprocessing | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
def tokenize(example): | |
return tokenizer(example["context"], padding="max_length", truncation=True) | |
def encode_label(example): | |
example["label"] = 1 if "bank" in example["context"].lower() else 0 | |
return example | |
train_data = train_data.map(tokenize).map(encode_label) | |
test_data = test_data.map(tokenize).map(encode_label) | |
train_data.set_format("torch", columns=["input_ids", "attention_mask", "label"]) | |
test_data.set_format("torch", columns=["input_ids", "attention_mask", "label"]) | |
# Model and trainer | |
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2) | |
training_args = TrainingArguments( | |
output_dir="./results", | |
num_train_epochs=3, | |
per_device_train_batch_size=4, | |
per_device_eval_batch_size=4, | |
evaluation_strategy="epoch", | |
logging_dir="./logs" | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_data, | |
eval_dataset=test_data, | |
) | |
trainer.train() | |
metrics = trainer.evaluate() | |
predictions = trainer.predict(test_data).predictions.argmax(-1) | |
print(classification_report(test_data["label"], predictions)) | |