Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +51 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
4 |
+
from sklearn.metrics import classification_report
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load few-shot dataset
|
8 |
+
dataset = load_dataset("ai4bharat/sangraha")
|
9 |
+
train_data = dataset["train"].select(range(30))
|
10 |
+
test_data = dataset["validation"].select(range(10))
|
11 |
+
|
12 |
+
# Tokenizer and preprocessing
|
13 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
14 |
+
|
15 |
+
def tokenize(example):
|
16 |
+
return tokenizer(example["context"], padding="max_length", truncation=True)
|
17 |
+
|
18 |
+
def encode_label(example):
|
19 |
+
example["label"] = 1 if "bank" in example["context"].lower() else 0
|
20 |
+
return example
|
21 |
+
|
22 |
+
train_data = train_data.map(tokenize).map(encode_label)
|
23 |
+
test_data = test_data.map(tokenize).map(encode_label)
|
24 |
+
|
25 |
+
train_data.set_format("torch", columns=["input_ids", "attention_mask", "label"])
|
26 |
+
test_data.set_format("torch", columns=["input_ids", "attention_mask", "label"])
|
27 |
+
|
28 |
+
# Model and trainer
|
29 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
|
30 |
+
|
31 |
+
training_args = TrainingArguments(
|
32 |
+
output_dir="./results",
|
33 |
+
num_train_epochs=3,
|
34 |
+
per_device_train_batch_size=4,
|
35 |
+
per_device_eval_batch_size=4,
|
36 |
+
evaluation_strategy="epoch",
|
37 |
+
logging_dir="./logs"
|
38 |
+
)
|
39 |
+
|
40 |
+
trainer = Trainer(
|
41 |
+
model=model,
|
42 |
+
args=training_args,
|
43 |
+
train_dataset=train_data,
|
44 |
+
eval_dataset=test_data,
|
45 |
+
)
|
46 |
+
|
47 |
+
trainer.train()
|
48 |
+
metrics = trainer.evaluate()
|
49 |
+
|
50 |
+
predictions = trainer.predict(test_data).predictions.argmax(-1)
|
51 |
+
print(classification_report(test_data["label"], predictions))
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
transformers
|
3 |
+
datasets
|
4 |
+
scikit-learn
|
5 |
+
torch
|