llm_test / mistral_model
Triomphanrt's picture
f_commit
584873d verified
raw
history blame
3 kB
import warnings
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from transformers.models.mistral.modeling_mistral import MistralForCausalLM
from transformers.models.llama.tokenization_llama_fast import LlamaTokenizerFast
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun
from typing import Optional, List, Mapping, Any
class CustomLLMMistral(LLM):
model: MistralForCausalLM
tokenizer: LlamaTokenizerFast
@property
def _llm_type(self) -> str:
return "custom"
def _call(self, prompt: str, stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:
messages = [
{"role": "user", "content": prompt},
]
encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(self.model.device)
generated_ids = self.model.generate(model_inputs, max_new_tokens=512, do_sample=True, pad_token_id=tokenizer.eos_token_id, top_k=4, temperature=0.7)
decoded = self.tokenizer.batch_decode(generated_ids)
output = decoded[0].split("[/INST]")[1].replace("</s>", "").strip()
if stop is not None:
for word in stop:
output = output.split(word)[0].strip()
while not output.endswith("```"):
output += "`"
return output
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"model": self.model}
llm = CustomLLMMistral(model=model, tokenizer=tokenizer)
import numexpr as ne
from langchain.tools import WikipediaQueryRun, BaseTool
from langchain_community.utilities import WikipediaAPIWrapper
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=2500))
print(wikipedia.run("Deep Learning"))
wikipedia_tool = Tool(
name="wikipedia",
description="Never search for more than one concept at a single step. If you need to compare two concepts, search for each one individually. Syntax: string with a simple concept",
func=wikipedia.run
)
class Calculator(BaseTool):
name = "calculator"
description = "Use this tool for math operations. It requires numexpr syntax. Use it always you need to solve any math operation. Be sure syntax is correct."
def _run(self, expression: str):
try:
return ne.evaluate(expression).item()
except Exception:
return "This is not a numexpr valid syntax. Try a different syntax."
def _arun(self, radius: int):
raise NotImplementedError("This tool does not support async")
calculator_tool = Calculator()
calculator_tool.run("2+3")