Spaces:
No application file
No application file
f_commit
Browse files- mistral_model +85 -0
mistral_model
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
+
from transformers.models.mistral.modeling_mistral import MistralForCausalLM
|
5 |
+
from transformers.models.llama.tokenization_llama_fast import LlamaTokenizerFast
|
6 |
+
|
7 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
8 |
+
|
9 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
12 |
+
|
13 |
+
from langchain.llms.base import LLM
|
14 |
+
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
15 |
+
from typing import Optional, List, Mapping, Any
|
16 |
+
|
17 |
+
class CustomLLMMistral(LLM):
|
18 |
+
model: MistralForCausalLM
|
19 |
+
tokenizer: LlamaTokenizerFast
|
20 |
+
|
21 |
+
@property
|
22 |
+
def _llm_type(self) -> str:
|
23 |
+
return "custom"
|
24 |
+
|
25 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None,
|
26 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:
|
27 |
+
|
28 |
+
messages = [
|
29 |
+
{"role": "user", "content": prompt},
|
30 |
+
]
|
31 |
+
|
32 |
+
encodeds = self.tokenizer.apply_chat_template(messages, return_tensors="pt")
|
33 |
+
model_inputs = encodeds.to(self.model.device)
|
34 |
+
|
35 |
+
generated_ids = self.model.generate(model_inputs, max_new_tokens=512, do_sample=True, pad_token_id=tokenizer.eos_token_id, top_k=4, temperature=0.7)
|
36 |
+
decoded = self.tokenizer.batch_decode(generated_ids)
|
37 |
+
|
38 |
+
output = decoded[0].split("[/INST]")[1].replace("</s>", "").strip()
|
39 |
+
|
40 |
+
if stop is not None:
|
41 |
+
for word in stop:
|
42 |
+
output = output.split(word)[0].strip()
|
43 |
+
|
44 |
+
while not output.endswith("```"):
|
45 |
+
output += "`"
|
46 |
+
|
47 |
+
return output
|
48 |
+
|
49 |
+
@property
|
50 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
51 |
+
return {"model": self.model}
|
52 |
+
|
53 |
+
llm = CustomLLMMistral(model=model, tokenizer=tokenizer)
|
54 |
+
|
55 |
+
import numexpr as ne
|
56 |
+
from langchain.tools import WikipediaQueryRun, BaseTool
|
57 |
+
from langchain_community.utilities import WikipediaAPIWrapper
|
58 |
+
|
59 |
+
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=2500))
|
60 |
+
|
61 |
+
print(wikipedia.run("Deep Learning"))
|
62 |
+
|
63 |
+
|
64 |
+
wikipedia_tool = Tool(
|
65 |
+
name="wikipedia",
|
66 |
+
description="Never search for more than one concept at a single step. If you need to compare two concepts, search for each one individually. Syntax: string with a simple concept",
|
67 |
+
func=wikipedia.run
|
68 |
+
)
|
69 |
+
|
70 |
+
class Calculator(BaseTool):
|
71 |
+
name = "calculator"
|
72 |
+
description = "Use this tool for math operations. It requires numexpr syntax. Use it always you need to solve any math operation. Be sure syntax is correct."
|
73 |
+
|
74 |
+
def _run(self, expression: str):
|
75 |
+
try:
|
76 |
+
return ne.evaluate(expression).item()
|
77 |
+
except Exception:
|
78 |
+
return "This is not a numexpr valid syntax. Try a different syntax."
|
79 |
+
|
80 |
+
def _arun(self, radius: int):
|
81 |
+
raise NotImplementedError("This tool does not support async")
|
82 |
+
|
83 |
+
calculator_tool = Calculator()
|
84 |
+
|
85 |
+
calculator_tool.run("2+3")
|