Spaces:
Runtime error
Runtime error
import os | |
import random | |
import cv2 | |
import numpy as np | |
import torch | |
from PIL import Image | |
from rotary_embedding_torch import RotaryEmbedding | |
from torchvision import transforms | |
from sam_diffsr.models_sr.diffsr_modules import RRDBNet, Unet | |
from sam_diffsr.models_sr.diffusion_sam import GaussianDiffusion_sam | |
from sam_diffsr.tasks.srdiff import SRDiffTrainer | |
from sam_diffsr.utils_sr.dataset import SRDataSet | |
from sam_diffsr.utils_sr.hparams import hparams | |
from sam_diffsr.utils_sr.indexed_datasets import IndexedDataset | |
from sam_diffsr.utils_sr.matlab_resize import imresize | |
from sam_diffsr.utils_sr.utils import load_ckpt | |
def normalize_01(data): | |
mu = np.mean(data) | |
sigma = np.std(data) | |
if sigma == 0.: | |
return data - mu | |
else: | |
return (data - mu) / sigma | |
def normalize_11(data): | |
mu = np.mean(data) | |
sigma = np.std(data) | |
if sigma == 0.: | |
return data - mu | |
else: | |
return (data - mu) / sigma - 1 | |
class Df2kDataSet_sam(SRDataSet): | |
def __init__(self, prefix='train'): | |
if prefix == 'valid': | |
_prefix = 'test' | |
else: | |
_prefix = prefix | |
super().__init__(_prefix) | |
self.patch_size = hparams['patch_size'] | |
self.patch_size_lr = hparams['patch_size'] // hparams['sr_scale'] | |
if prefix == 'valid': | |
self.len = hparams['eval_batch_size'] * hparams['valid_steps'] | |
self.data_position_aug_transforms = transforms.Compose([ | |
transforms.RandomHorizontalFlip(), | |
transforms.RandomRotation(20, interpolation=Image.BICUBIC), | |
]) | |
self.data_color_aug_transforms = transforms.Compose([ | |
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1), | |
]) | |
self.sam_config = hparams.get('sam_config', False) | |
if self.sam_config.get('mask_RoPE', False): | |
h, w = map(int, self.sam_config['mask_RoPE_shape'].split('-')) | |
rotary_emb = RotaryEmbedding(dim=h) | |
sam_mask = rotary_emb.rotate_queries_or_keys(torch.ones(1, 1, w, h)) | |
self.RoPE_mask = sam_mask.cpu().numpy()[0, 0, ...] | |
def _get_item(self, index): | |
if self.indexed_ds is None: | |
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') | |
return self.indexed_ds[index] | |
def __getitem__(self, index): | |
item = self._get_item(index) | |
hparams = self.hparams | |
sr_scale = hparams['sr_scale'] | |
img_hr = np.uint8(item['img']) | |
img_lr = np.uint8(item['img_lr']) | |
if self.sam_config.get('mask_RoPE', False): | |
sam_mask = self.RoPE_mask | |
else: | |
if 'sam_mask' in item: | |
sam_mask = item['sam_mask'] | |
if sam_mask.shape != img_hr.shape[:2]: | |
sam_mask = cv2.resize(sam_mask, dsize=img_hr.shape[:2][::-1]) | |
else: | |
sam_mask = np.zeros_like(img_lr) | |
# TODO: clip for SRFlow | |
h, w, c = img_hr.shape | |
h = h - h % (sr_scale * 2) | |
w = w - w % (sr_scale * 2) | |
h_l = h // sr_scale | |
w_l = w // sr_scale | |
img_hr = img_hr[:h, :w] | |
sam_mask = sam_mask[:h, :w] | |
img_lr = img_lr[:h_l, :w_l] | |
# random crop | |
if self.prefix == 'train': | |
if self.data_augmentation and random.random() < 0.5: | |
img_hr, img_lr, sam_mask = self.data_augment(img_hr, img_lr, sam_mask) | |
i = random.randint(0, h - self.patch_size) // sr_scale * sr_scale | |
i_lr = i // sr_scale | |
j = random.randint(0, w - self.patch_size) // sr_scale * sr_scale | |
j_lr = j // sr_scale | |
img_hr = img_hr[i:i + self.patch_size, j:j + self.patch_size] | |
sam_mask = sam_mask[i:i + self.patch_size, j:j + self.patch_size] | |
img_lr = img_lr[i_lr:i_lr + self.patch_size_lr, j_lr:j_lr + self.patch_size_lr] | |
img_lr_up = imresize(img_lr / 256, hparams['sr_scale']) # np.float [H, W, C] | |
img_hr, img_lr, img_lr_up = [self.to_tensor_norm(x).float() for x in [img_hr, img_lr, img_lr_up]] | |
if hparams['sam_data_config']['all_same_mask_to_zero']: | |
if len(np.unique(sam_mask)) == 1: | |
sam_mask = np.zeros_like(sam_mask) | |
if hparams['sam_data_config']['normalize_01']: | |
if len(np.unique(sam_mask)) != 1: | |
sam_mask = normalize_01(sam_mask) | |
if hparams['sam_data_config']['normalize_11']: | |
if len(np.unique(sam_mask)) != 1: | |
sam_mask = normalize_11(sam_mask) | |
sam_mask = torch.FloatTensor(sam_mask).unsqueeze(dim=0) | |
return { | |
'img_hr': img_hr, 'img_lr': img_lr, | |
'img_lr_up': img_lr_up, 'item_name': item['item_name'], | |
'loc': np.array(item['loc']), 'loc_bdr': np.array(item['loc_bdr']), | |
'sam_mask': sam_mask | |
} | |
def __len__(self): | |
return self.len | |
def data_augment(self, img_hr, img_lr, sam_mask): | |
sr_scale = self.hparams['sr_scale'] | |
img_hr = Image.fromarray(img_hr) | |
img_hr, sam_mask = self.data_position_aug_transforms([img_hr, sam_mask]) | |
img_hr = self.data_color_aug_transforms(img_hr) | |
img_hr = np.asarray(img_hr) # np.uint8 [H, W, C] | |
img_lr = imresize(img_hr, 1 / sr_scale) | |
return img_hr, img_lr, sam_mask | |
class SRDiffDf2k_sam(SRDiffTrainer): | |
def __init__(self): | |
super().__init__() | |
self.dataset_cls = Df2kDataSet_sam | |
self.sam_config = hparams['sam_config'] | |
def build_model(self): | |
hidden_size = hparams['hidden_size'] | |
dim_mults = hparams['unet_dim_mults'] | |
dim_mults = [int(x) for x in dim_mults.split('|')] | |
denoise_fn = Unet( | |
hidden_size, out_dim=3, cond_dim=hparams['rrdb_num_feat'], dim_mults=dim_mults) | |
if hparams['use_rrdb']: | |
rrdb = RRDBNet(3, 3, hparams['rrdb_num_feat'], hparams['rrdb_num_block'], | |
hparams['rrdb_num_feat'] // 2) | |
if hparams['rrdb_ckpt'] != '' and os.path.exists(hparams['rrdb_ckpt']): | |
load_ckpt(rrdb, hparams['rrdb_ckpt']) | |
else: | |
rrdb = None | |
self.model = GaussianDiffusion_sam( | |
denoise_fn=denoise_fn, | |
rrdb_net=rrdb, | |
timesteps=hparams['timesteps'], | |
loss_type=hparams['loss_type'], | |
sam_config=hparams['sam_config'] | |
) | |
self.global_step = 0 | |
return self.model | |
# def sample_and_test(self, sample): | |
# ret = {k: 0 for k in self.metric_keys} | |
# ret['n_samples'] = 0 | |
# img_hr = sample['img_hr'] | |
# img_lr = sample['img_lr'] | |
# img_lr_up = sample['img_lr_up'] | |
# sam_mask = sample['sam_mask'] | |
# | |
# img_sr, rrdb_out = self.model.sample(img_lr, img_lr_up, img_hr.shape, sam_mask=sam_mask) | |
# | |
# for b in range(img_sr.shape[0]): | |
# s = self.measure.measure(img_sr[b], img_hr[b], img_lr[b], hparams['sr_scale']) | |
# ret['psnr'] += s['psnr'] | |
# ret['ssim'] += s['ssim'] | |
# ret['lpips'] += s['lpips'] | |
# ret['lr_psnr'] += s['lr_psnr'] | |
# ret['n_samples'] += 1 | |
# return img_sr, rrdb_out, ret | |
def training_step(self, batch): | |
img_hr = batch['img_hr'] | |
img_lr = batch['img_lr'] | |
img_lr_up = batch['img_lr_up'] | |
sam_mask = batch['sam_mask'] | |
losses, _, _ = self.model(img_hr, img_lr, img_lr_up, sam_mask=sam_mask) | |
total_loss = sum(losses.values()) | |
return losses, total_loss | |