File size: 7,824 Bytes
193c713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import random

import cv2
import numpy as np
import torch
from PIL import Image
from rotary_embedding_torch import RotaryEmbedding
from torchvision import transforms

from sam_diffsr.models_sr.diffsr_modules import RRDBNet, Unet
from sam_diffsr.models_sr.diffusion_sam import GaussianDiffusion_sam
from sam_diffsr.tasks.srdiff import SRDiffTrainer
from sam_diffsr.utils_sr.dataset import SRDataSet
from sam_diffsr.utils_sr.hparams import hparams
from sam_diffsr.utils_sr.indexed_datasets import IndexedDataset
from sam_diffsr.utils_sr.matlab_resize import imresize
from sam_diffsr.utils_sr.utils import load_ckpt


def normalize_01(data):
    mu = np.mean(data)
    sigma = np.std(data)
    
    if sigma == 0.:
        return data - mu
    else:
        return (data - mu) / sigma


def normalize_11(data):
    mu = np.mean(data)
    sigma = np.std(data)
    
    if sigma == 0.:
        return data - mu
    else:
        return (data - mu) / sigma - 1


class Df2kDataSet_sam(SRDataSet):
    def __init__(self, prefix='train'):
        
        if prefix == 'valid':
            _prefix = 'test'
        else:
            _prefix = prefix
        
        super().__init__(_prefix)
        
        self.patch_size = hparams['patch_size']
        self.patch_size_lr = hparams['patch_size'] // hparams['sr_scale']
        if prefix == 'valid':
            self.len = hparams['eval_batch_size'] * hparams['valid_steps']
        
        self.data_position_aug_transforms = transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.RandomRotation(20, interpolation=Image.BICUBIC),
        ])
        
        self.data_color_aug_transforms = transforms.Compose([
                transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
        ])
        
        self.sam_config = hparams.get('sam_config', False)
        
        if self.sam_config.get('mask_RoPE', False):
            h, w = map(int, self.sam_config['mask_RoPE_shape'].split('-'))
            rotary_emb = RotaryEmbedding(dim=h)
            sam_mask = rotary_emb.rotate_queries_or_keys(torch.ones(1, 1, w, h))
            self.RoPE_mask = sam_mask.cpu().numpy()[0, 0, ...]
    
    def _get_item(self, index):
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        return self.indexed_ds[index]
    
    def __getitem__(self, index):
        item = self._get_item(index)
        hparams = self.hparams
        sr_scale = hparams['sr_scale']
        
        img_hr = np.uint8(item['img'])
        img_lr = np.uint8(item['img_lr'])
        
        if self.sam_config.get('mask_RoPE', False):
            sam_mask = self.RoPE_mask
        else:
            if 'sam_mask' in item:
                sam_mask = item['sam_mask']
                if sam_mask.shape != img_hr.shape[:2]:
                    sam_mask = cv2.resize(sam_mask, dsize=img_hr.shape[:2][::-1])
            else:
                sam_mask = np.zeros_like(img_lr)
        
        # TODO: clip for SRFlow
        h, w, c = img_hr.shape
        h = h - h % (sr_scale * 2)
        w = w - w % (sr_scale * 2)
        h_l = h // sr_scale
        w_l = w // sr_scale
        img_hr = img_hr[:h, :w]
        sam_mask = sam_mask[:h, :w]
        img_lr = img_lr[:h_l, :w_l]
        
        # random crop
        if self.prefix == 'train':
            if self.data_augmentation and random.random() < 0.5:
                img_hr, img_lr, sam_mask = self.data_augment(img_hr, img_lr, sam_mask)
            i = random.randint(0, h - self.patch_size) // sr_scale * sr_scale
            i_lr = i // sr_scale
            j = random.randint(0, w - self.patch_size) // sr_scale * sr_scale
            j_lr = j // sr_scale
            img_hr = img_hr[i:i + self.patch_size, j:j + self.patch_size]
            sam_mask = sam_mask[i:i + self.patch_size, j:j + self.patch_size]
            img_lr = img_lr[i_lr:i_lr + self.patch_size_lr, j_lr:j_lr + self.patch_size_lr]
        
        img_lr_up = imresize(img_lr / 256, hparams['sr_scale'])  # np.float [H, W, C]
        img_hr, img_lr, img_lr_up = [self.to_tensor_norm(x).float() for x in [img_hr, img_lr, img_lr_up]]
        
        if hparams['sam_data_config']['all_same_mask_to_zero']:
            if len(np.unique(sam_mask)) == 1:
                sam_mask = np.zeros_like(sam_mask)
        
        if hparams['sam_data_config']['normalize_01']:
            if len(np.unique(sam_mask)) != 1:
                sam_mask = normalize_01(sam_mask)
        
        if hparams['sam_data_config']['normalize_11']:
            if len(np.unique(sam_mask)) != 1:
                sam_mask = normalize_11(sam_mask)
        
        sam_mask = torch.FloatTensor(sam_mask).unsqueeze(dim=0)
        
        return {
                'img_hr': img_hr, 'img_lr': img_lr,
                'img_lr_up': img_lr_up, 'item_name': item['item_name'],
                'loc': np.array(item['loc']), 'loc_bdr': np.array(item['loc_bdr']),
                'sam_mask': sam_mask
        }
    
    def __len__(self):
        return self.len
    
    def data_augment(self, img_hr, img_lr, sam_mask):
        sr_scale = self.hparams['sr_scale']
        img_hr = Image.fromarray(img_hr)
        img_hr, sam_mask = self.data_position_aug_transforms([img_hr, sam_mask])
        img_hr = self.data_color_aug_transforms(img_hr)
        img_hr = np.asarray(img_hr)  # np.uint8 [H, W, C]
        img_lr = imresize(img_hr, 1 / sr_scale)
        return img_hr, img_lr, sam_mask


class SRDiffDf2k_sam(SRDiffTrainer):
    def __init__(self):
        super().__init__()
        self.dataset_cls = Df2kDataSet_sam
        self.sam_config = hparams['sam_config']
    
    def build_model(self):
        hidden_size = hparams['hidden_size']
        dim_mults = hparams['unet_dim_mults']
        dim_mults = [int(x) for x in dim_mults.split('|')]
        
        denoise_fn = Unet(
                hidden_size, out_dim=3, cond_dim=hparams['rrdb_num_feat'], dim_mults=dim_mults)
        if hparams['use_rrdb']:
            rrdb = RRDBNet(3, 3, hparams['rrdb_num_feat'], hparams['rrdb_num_block'],
                           hparams['rrdb_num_feat'] // 2)
            if hparams['rrdb_ckpt'] != '' and os.path.exists(hparams['rrdb_ckpt']):
                load_ckpt(rrdb, hparams['rrdb_ckpt'])
        else:
            rrdb = None
        self.model = GaussianDiffusion_sam(
                denoise_fn=denoise_fn,
                rrdb_net=rrdb,
                timesteps=hparams['timesteps'],
                loss_type=hparams['loss_type'],
                sam_config=hparams['sam_config']
        )
        self.global_step = 0
        return self.model
    
    # def sample_and_test(self, sample):
    #     ret = {k: 0 for k in self.metric_keys}
    #     ret['n_samples'] = 0
    #     img_hr = sample['img_hr']
    #     img_lr = sample['img_lr']
    #     img_lr_up = sample['img_lr_up']
    #     sam_mask = sample['sam_mask']
    #
    #     img_sr, rrdb_out = self.model.sample(img_lr, img_lr_up, img_hr.shape, sam_mask=sam_mask)
    #
    #     for b in range(img_sr.shape[0]):
    #         s = self.measure.measure(img_sr[b], img_hr[b], img_lr[b], hparams['sr_scale'])
    #         ret['psnr'] += s['psnr']
    #         ret['ssim'] += s['ssim']
    #         ret['lpips'] += s['lpips']
    #         ret['lr_psnr'] += s['lr_psnr']
    #         ret['n_samples'] += 1
    #     return img_sr, rrdb_out, ret
    
    def training_step(self, batch):
        img_hr = batch['img_hr']
        img_lr = batch['img_lr']
        img_lr_up = batch['img_lr_up']
        sam_mask = batch['sam_mask']
        losses, _, _ = self.model(img_hr, img_lr, img_lr_up, sam_mask=sam_mask)
        total_loss = sum(losses.values())
        return losses, total_loss