File size: 7,144 Bytes
d746c58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import time
import h5py
import numpy as np
import gradio as gr
import plotly.graph_objects as go
from railnet_model import RailNetSystem

from huggingface_hub import hf_hub_download

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# model = RailNetSystem.from_pretrained(".").cuda()

model = RailNetSystem.from_pretrained("Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image").cuda()

model.load_weights(from_hub=True, repo_id="Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image")


# def wait_for_stable_file(file_path, timeout=5, check_interval=0.2):
#     start_time = time.time()
#     last_size = -1
#     while time.time() - start_time < timeout:
#         current_size = os.path.getsize(file_path)
#         if current_size == last_size:
#             return True
#         last_size = current_size
#         time.sleep(check_interval)
#     return False

# def process_cbct_file(h5_file, save_dir="./output"):
#     if not wait_for_stable_file(h5_file.name):
#         raise RuntimeError("File upload has not been completed or is unstable, please try again.")

#     try:
#         with h5py.File(h5_file.name, "r") as f:
#             if "image" not in f or "label" not in f:
#                 raise KeyError("The file is missing ‘image’ or ‘label’ value")
#             image = f["image"][:]
#             label = f["label"][:]
#     except Exception as e:
#         raise RuntimeError(f"Failed to read the .h5 file: {str(e)}")

#     name = os.path.basename(h5_file.name).replace(".h5", "")
#     pred, dice, jc, hd, asd = model(image, label, save_dir, name)

#     img_path = os.path.join(save_dir, f"{name}_img.nii.gz")
#     pred_path = os.path.join(save_dir, f"{name}_pred.nii.gz")

#     return pred, f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}", img_path, pred_path

def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25):
    downsample_factor = 2
    pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor]

    fig = go.Figure(data=go.Volume(
        x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]),
        y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]),
        z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]),
        value=pred_ds.flatten(),
        isomin=0.5,
        isomax=1.0,
        opacity=0.1,
        surface_count=1,
        colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']],
        showscale=False
    ))

    fig.update_layout(
        scene=dict(
            xaxis=dict(visible=False),
            yaxis=dict(visible=False),
            zaxis=dict(visible=False),
            camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye))
        ),
        margin=dict(l=0, r=0, b=0, t=0)
    )
    return fig


def handle_example(filename):
    repo_id = "Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image"
    h5_path = hf_hub_download(repo_id=repo_id, filename=f"example_input_file/{filename}")
   
    with h5py.File(h5_path, "r") as f:
        image = f["image"][:]
        label = f["label"][:]
    
    name = filename.replace(".h5", "")
    pred, dice, jc, hd, asd = model(image, label, "./output", name)
    
    fig = render_plotly_volume(pred)
    
    img_path = f"./output/{name}_img.nii.gz"
    pred_path = f"./output/{name}_pred.nii.gz"
    
    metrics = f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}"
    
    return metrics, pred, fig, img_path, pred_path


def clear_all():
    return "", None, None, None, None

with gr.Blocks() as demo:
    gr.HTML("<div style='text-align: center; font-size: 22px; font-weight: bold;'>🦷 Demo of RailNet: A CBCT Tooth Segmentation System</div>")
    gr.HTML("<div style='text-align: center; font-size: 15px'>✅ Steps: Select a CBCT example file (.h5)  →  Automatic inference and metrics display  →  View 3D segmentation result (Mouse drag and scroll wheel zooming)</div>")

    # gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📂 Step 1: Upload the .h5 example file containing both ‘image’ and ‘label’ values</div>")
    gr.HTML("""

    <style>

    .code-style {

        font-family: monospace;

        background-color: #2f363d;

        color: #ffffff;

        padding: 2px 6px;

        border-radius: 4px;

        font-size: 90%;

    }

    </style>



    <div style='font-size: 15px; font-weight: bold;'>

        📂 Step 1: Select a <span class='code-style'>.h5</span> example file from the <span class='code-style'>example_input_file</span> folder in our

        <a href='https://huggingface.co/Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image' target='_blank' style='text-decoration: none; color: #1f6feb; font-weight: bold;'>

        Hugging Face model

        </a> repository. 

    </div>

    """)

    # file_input = gr.File()


    example_files = ["CBCT_01.h5", "CBCT_02.h5", "CBCT_03.h5", "CBCT_04.h5"] 
    dropdown = gr.Dropdown(choices=example_files, label="Example File", value=example_files[0])


    with gr.Row():
        clear_btn = gr.Button("清除", variant="secondary")
        submit_btn = gr.Button("提交", variant="primary")

    gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)</div>")
    result_text = gr.Textbox()
    hidden_pred = gr.State(value=None) 

    gr.HTML("<div style='font-size: 15px; font-weight: bold;'>👁️ Step 3: 3D Visualisation</div>")
    plot_output = gr.Plot()

    hidden_img_file = gr.File(visible=False)
    hidden_pred_file = gr.File(visible=False)

    gr.HTML("<div style='font-size: 15px; font-weight: bold;'>⬇️ Step 4: Download <span class='code-style'>NIfTI</span> files for accurate 1:1 visualization using <span class='code-style'>ITK-SNAP</span> software</div>")
    with gr.Row():
        download_img_btn = gr.Button("Download Original Image")
        download_pred_btn = gr.Button("Download Segmentation Result")

    # def handle_upload(h5_file):
    #     pred, metrics, img_path, pred_path = process_cbct_file(h5_file)
    #     fig = render_plotly_volume(pred)
    #     return metrics, pred, fig, img_path, pred_path

    submit_btn.click(
        fn=handle_example,
        inputs=[dropdown],
        outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
    )

    def update_view(pred, x_eye, y_eye, z_eye):
        if pred is None:
            return gr.update()
        return render_plotly_volume(pred, x_eye, y_eye, z_eye)

    clear_btn.click(
        fn=clear_all,
        inputs=[],
        outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
    )

    download_img_btn.click(fn=lambda f: f, inputs=[hidden_img_file], outputs=[hidden_img_file])
    download_pred_btn.click(fn=lambda f: f, inputs=[hidden_pred_file], outputs=[hidden_pred_file])

demo.launch()