Tournesol-Saturday commited on
Commit
d746c58
·
verified ·
1 Parent(s): 6246581

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +183 -0
app.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import h5py
4
+ import numpy as np
5
+ import gradio as gr
6
+ import plotly.graph_objects as go
7
+ from railnet_model import RailNetSystem
8
+
9
+ from huggingface_hub import hf_hub_download
10
+
11
+ os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
12
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
13
+
14
+ # model = RailNetSystem.from_pretrained(".").cuda()
15
+
16
+ model = RailNetSystem.from_pretrained("Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image").cuda()
17
+
18
+ model.load_weights(from_hub=True, repo_id="Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image")
19
+
20
+
21
+ # def wait_for_stable_file(file_path, timeout=5, check_interval=0.2):
22
+ # start_time = time.time()
23
+ # last_size = -1
24
+ # while time.time() - start_time < timeout:
25
+ # current_size = os.path.getsize(file_path)
26
+ # if current_size == last_size:
27
+ # return True
28
+ # last_size = current_size
29
+ # time.sleep(check_interval)
30
+ # return False
31
+
32
+ # def process_cbct_file(h5_file, save_dir="./output"):
33
+ # if not wait_for_stable_file(h5_file.name):
34
+ # raise RuntimeError("File upload has not been completed or is unstable, please try again.")
35
+
36
+ # try:
37
+ # with h5py.File(h5_file.name, "r") as f:
38
+ # if "image" not in f or "label" not in f:
39
+ # raise KeyError("The file is missing ‘image’ or ‘label’ value")
40
+ # image = f["image"][:]
41
+ # label = f["label"][:]
42
+ # except Exception as e:
43
+ # raise RuntimeError(f"Failed to read the .h5 file: {str(e)}")
44
+
45
+ # name = os.path.basename(h5_file.name).replace(".h5", "")
46
+ # pred, dice, jc, hd, asd = model(image, label, save_dir, name)
47
+
48
+ # img_path = os.path.join(save_dir, f"{name}_img.nii.gz")
49
+ # pred_path = os.path.join(save_dir, f"{name}_pred.nii.gz")
50
+
51
+ # return pred, f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}", img_path, pred_path
52
+
53
+ def render_plotly_volume(pred, x_eye=1.25, y_eye=1.25, z_eye=1.25):
54
+ downsample_factor = 2
55
+ pred_ds = pred[::downsample_factor, ::downsample_factor, ::downsample_factor]
56
+
57
+ fig = go.Figure(data=go.Volume(
58
+ x=np.repeat(np.arange(pred_ds.shape[0]), pred_ds.shape[1] * pred_ds.shape[2]),
59
+ y=np.tile(np.repeat(np.arange(pred_ds.shape[1]), pred_ds.shape[2]), pred_ds.shape[0]),
60
+ z=np.tile(np.arange(pred_ds.shape[2]), pred_ds.shape[0] * pred_ds.shape[1]),
61
+ value=pred_ds.flatten(),
62
+ isomin=0.5,
63
+ isomax=1.0,
64
+ opacity=0.1,
65
+ surface_count=1,
66
+ colorscale=[[0, 'rgb(255, 0, 0)'], [1, 'rgb(255, 0, 0)']],
67
+ showscale=False
68
+ ))
69
+
70
+ fig.update_layout(
71
+ scene=dict(
72
+ xaxis=dict(visible=False),
73
+ yaxis=dict(visible=False),
74
+ zaxis=dict(visible=False),
75
+ camera=dict(eye=dict(x=x_eye, y=y_eye, z=z_eye))
76
+ ),
77
+ margin=dict(l=0, r=0, b=0, t=0)
78
+ )
79
+ return fig
80
+
81
+
82
+ def handle_example(filename):
83
+ repo_id = "Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image"
84
+ h5_path = hf_hub_download(repo_id=repo_id, filename=f"example_input_file/{filename}")
85
+
86
+ with h5py.File(h5_path, "r") as f:
87
+ image = f["image"][:]
88
+ label = f["label"][:]
89
+
90
+ name = filename.replace(".h5", "")
91
+ pred, dice, jc, hd, asd = model(image, label, "./output", name)
92
+
93
+ fig = render_plotly_volume(pred)
94
+
95
+ img_path = f"./output/{name}_img.nii.gz"
96
+ pred_path = f"./output/{name}_pred.nii.gz"
97
+
98
+ metrics = f"Dice: {dice:.4f}, Jaccard: {jc:.4f}, 95HD: {hd:.2f}, ASD: {asd:.2f}"
99
+
100
+ return metrics, pred, fig, img_path, pred_path
101
+
102
+
103
+ def clear_all():
104
+ return "", None, None, None, None
105
+
106
+ with gr.Blocks() as demo:
107
+ gr.HTML("<div style='text-align: center; font-size: 22px; font-weight: bold;'>🦷 Demo of RailNet: A CBCT Tooth Segmentation System</div>")
108
+ gr.HTML("<div style='text-align: center; font-size: 15px'>✅ Steps: Select a CBCT example file (.h5) → Automatic inference and metrics display → View 3D segmentation result (Mouse drag and scroll wheel zooming)</div>")
109
+
110
+ # gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📂 Step 1: Upload the .h5 example file containing both ‘image’ and ‘label’ values</div>")
111
+ gr.HTML("""
112
+ <style>
113
+ .code-style {
114
+ font-family: monospace;
115
+ background-color: #2f363d;
116
+ color: #ffffff;
117
+ padding: 2px 6px;
118
+ border-radius: 4px;
119
+ font-size: 90%;
120
+ }
121
+ </style>
122
+
123
+ <div style='font-size: 15px; font-weight: bold;'>
124
+ 📂 Step 1: Select a <span class='code-style'>.h5</span> example file from the <span class='code-style'>example_input_file</span> folder in our
125
+ <a href='https://huggingface.co/Tournesol-Saturday/railNet-tooth-segmentation-in-CBCT-image' target='_blank' style='text-decoration: none; color: #1f6feb; font-weight: bold;'>
126
+ Hugging Face model
127
+ </a> repository.
128
+ </div>
129
+ """)
130
+
131
+ # file_input = gr.File()
132
+
133
+
134
+ example_files = ["CBCT_01.h5", "CBCT_02.h5", "CBCT_03.h5", "CBCT_04.h5"]
135
+ dropdown = gr.Dropdown(choices=example_files, label="Example File", value=example_files[0])
136
+
137
+
138
+ with gr.Row():
139
+ clear_btn = gr.Button("清除", variant="secondary")
140
+ submit_btn = gr.Button("提交", variant="primary")
141
+
142
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>📊 Step 2: Metrics (Dice, Jaccard, 95HD, ASD)</div>")
143
+ result_text = gr.Textbox()
144
+ hidden_pred = gr.State(value=None)
145
+
146
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>👁️ Step 3: 3D Visualisation</div>")
147
+ plot_output = gr.Plot()
148
+
149
+ hidden_img_file = gr.File(visible=False)
150
+ hidden_pred_file = gr.File(visible=False)
151
+
152
+ gr.HTML("<div style='font-size: 15px; font-weight: bold;'>⬇️ Step 4: Download <span class='code-style'>NIfTI</span> files for accurate 1:1 visualization using <span class='code-style'>ITK-SNAP</span> software</div>")
153
+ with gr.Row():
154
+ download_img_btn = gr.Button("Download Original Image")
155
+ download_pred_btn = gr.Button("Download Segmentation Result")
156
+
157
+ # def handle_upload(h5_file):
158
+ # pred, metrics, img_path, pred_path = process_cbct_file(h5_file)
159
+ # fig = render_plotly_volume(pred)
160
+ # return metrics, pred, fig, img_path, pred_path
161
+
162
+ submit_btn.click(
163
+ fn=handle_example,
164
+ inputs=[dropdown],
165
+ outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
166
+ )
167
+
168
+ def update_view(pred, x_eye, y_eye, z_eye):
169
+ if pred is None:
170
+ return gr.update()
171
+ return render_plotly_volume(pred, x_eye, y_eye, z_eye)
172
+
173
+ clear_btn.click(
174
+ fn=clear_all,
175
+ inputs=[],
176
+ outputs=[result_text, hidden_pred, plot_output, hidden_img_file, hidden_pred_file]
177
+ )
178
+
179
+ download_img_btn.click(fn=lambda f: f, inputs=[hidden_img_file], outputs=[hidden_img_file])
180
+ download_pred_btn.click(fn=lambda f: f, inputs=[hidden_pred_file], outputs=[hidden_pred_file])
181
+
182
+ demo.launch()
183
+