Tomtom84 commited on
Commit
fd06e70
·
verified ·
1 Parent(s): c70d8eb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -84
app.py CHANGED
@@ -1,155 +1,148 @@
1
  import os
2
  import json
3
  import asyncio
 
4
  import torch
5
  from fastapi import FastAPI, WebSocket, WebSocketDisconnect
6
  from huggingface_hub import login
7
  from snac import SNAC
8
  from transformers import AutoModelForCausalLM, AutoTokenizer
9
 
10
- # — HF‑Token & Login
11
- HF_TOKEN = os.getenv("HF_TOKEN")
12
  if HF_TOKEN:
13
  login(HF_TOKEN)
14
 
15
- # — Device auswählen
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
 
18
- # — FastAPI instanziieren
19
  app = FastAPI()
20
 
21
- # — Hello‑Route, damit GET / nicht 404 gibt
22
  @app.get("/")
23
  async def read_root():
24
- return {"message": "Hello, world!"}
25
 
26
- # — Modelle beim Startup laden
27
  @app.on_event("startup")
28
- async def load_models():
29
  global tokenizer, model, snac
30
- # SNAC laden
31
  snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
32
- # TTS‑Modell laden
33
  model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
34
  tokenizer = AutoTokenizer.from_pretrained(model_name)
35
  model = AutoModelForCausalLM.from_pretrained(
36
  model_name,
37
- device_map="auto" if device=="cuda" else None,
38
- torch_dtype=torch.bfloat16 if device=="cuda" else None,
39
  low_cpu_mem_usage=True
40
- ).to(device)
 
41
  model.config.pad_token_id = model.config.eos_token_id
42
 
43
- # — Input‑Vorbereitung
 
 
 
 
 
 
44
  def prepare_inputs(text: str, voice: str):
45
  prompt = f"{voice}: {text}"
46
- input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
47
- start = torch.tensor([[128259]], dtype=torch.int64, device=device)
48
- end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
49
- ids = torch.cat([start, input_ids, end], dim=1)
50
- mask = torch.ones_like(ids, device=device)
51
  return ids, mask
52
 
53
- # SNAC‑Dekodierung eines 7‑Token‑Blocks →
54
- def decode_block(tokens: list[int]) -> bytes:
55
- l1, l2, l3 = [], [], []
56
  b = tokens
57
- l1.append(b[0])
58
- l2.append(b[1]-4096)
59
- l3.append(b[2]-2*4096)
60
- l3.append(b[3]-3*4096)
61
- l2.append(b[4]-4*4096)
62
- l3.append(b[5]-5*4096)
63
- l3.append(b[6]-6*4096)
64
  codes = [
65
  torch.tensor(l1, device=device).unsqueeze(0),
66
  torch.tensor(l2, device=device).unsqueeze(0),
67
  torch.tensor(l3, device=device).unsqueeze(0),
68
  ]
69
  audio = snac.decode(codes).squeeze().cpu().numpy()
70
- return (audio * 32767).astype("int16").tobytes()
 
71
 
72
- # — WebSocket‑Endpoint mit Chunked‑Generate (max_new_tokens=50)
73
  @app.websocket("/ws/tts")
74
  async def tts_ws(ws: WebSocket):
75
  await ws.accept()
76
  try:
77
- # 1) Anfrage einlesen
78
  msg = await ws.receive_text()
79
  req = json.loads(msg)
80
  text = req.get("text", "")
81
  voice = req.get("voice", "Jakob")
82
 
83
- # 2) Inputs bauen
84
  input_ids, attention_mask = prepare_inputs(text, voice)
85
- past_kvs = None
86
- buffer_codes: list[int] = []
87
-
88
- # 3) Chunk‑Generate‑Loop
89
- chunk_size = 50
90
- eos_id = model.config.eos_token_id
91
 
92
- # Wir tracken bisher erzeugte Länge, um abzugrenzen, was neu ist
93
- prev_len = 0
 
 
94
 
95
  while True:
 
96
  out = model.generate(
97
- input_ids = input_ids if past_kvs is None else None,
98
  attention_mask=attention_mask if past_kvs is None else None,
99
- max_new_tokens=chunk_size,
100
  do_sample=True,
101
  temperature=0.7,
102
  top_p=0.95,
103
  repetition_penalty=1.1,
104
- eos_token_id=eos_id,
 
105
  use_cache=True,
106
- return_dict_in_generate=True,
107
- output_scores=False,
108
- past_key_values=past_kvs
109
  )
110
- # Update past_kvs und sequences
111
- past_kvs = out.past_key_values
112
- seqs = out.sequences # (1, total_length)
113
- total_len = seqs.shape[1]
114
-
115
- # 4) Neue Tokens extrahieren
116
- new_tokens = seqs[0, prev_len:total_len].tolist()
117
- prev_len = total_len
118
-
119
- # 5) Jeden neuen Token aufbereiten
120
- for tok in new_tokens:
121
- if tok == eos_id:
122
- # Ende
123
- new_tokens = [] # clean up
124
  break
125
- if tok == 128257:
126
- buffer_codes.clear()
127
  continue
128
- # offset und puffern
129
- buffer_codes.append(tok - 128266)
130
- # sobald 7 Codes gesammelt, dekodieren & senden
131
- if len(buffer_codes) >= 7:
132
- block = buffer_codes[:7]
133
- buffer_codes = buffer_codes[7:]
134
- pcm = decode_block(block)
135
- await ws.send_bytes(pcm)
136
-
137
- # 6) Abbruch, wenn EOS im Chunk war
138
- if eos_id in new_tokens:
139
  break
140
 
141
- # Inputs für nächsten Durchgang nur beim ersten Mal
142
- input_ids = attention_mask = None
143
-
144
- # 7) Zum Schluss sauber schließen
145
  await ws.close()
 
146
  except WebSocketDisconnect:
147
- return
148
  except Exception as e:
149
  print("Error in /ws/tts:", e)
150
  await ws.close(code=1011)
151
-
152
- # — Main für lokalen Test —
153
- if __name__ == "__main__":
154
- import uvicorn
155
- uvicorn.run("app:app", host="0.0.0.0", port=7860)
 
1
  import os
2
  import json
3
  import asyncio
4
+
5
  import torch
6
  from fastapi import FastAPI, WebSocket, WebSocketDisconnect
7
  from huggingface_hub import login
8
  from snac import SNAC
9
  from transformers import AutoModelForCausalLM, AutoTokenizer
10
 
11
+ # — ENV & AUTH
12
+ HF_TOKEN = os.getenv("HF_TOKEN", "")
13
  if HF_TOKEN:
14
  login(HF_TOKEN)
15
 
16
+ # — DEVICE SETUP
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
+ # — FASTAPI INSTANCE
20
  app = FastAPI()
21
 
22
+ # — HEALTHCHECK / ROOT
23
  @app.get("/")
24
  async def read_root():
25
+ return {"message": "TTS WebSocket up and running!"}
26
 
27
+ # — LOAD MODELS ON STARTUP
28
  @app.on_event("startup")
29
+ async def startup_event():
30
  global tokenizer, model, snac
31
+ # 1) SNAC vocoder
32
  snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
33
+ # 2) TTS model & tokenizer
34
  model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
35
  tokenizer = AutoTokenizer.from_pretrained(model_name)
36
  model = AutoModelForCausalLM.from_pretrained(
37
  model_name,
38
+ device_map="auto",
39
+ torch_dtype=torch.bfloat16 if device == "cuda" else None,
40
  low_cpu_mem_usage=True
41
+ )
42
+ # make pad == eos
43
  model.config.pad_token_id = model.config.eos_token_id
44
 
45
+ # — HELPERS
46
+ START_TOKEN = 128259
47
+ END_TOKENS = [128009, 128260]
48
+ RESET_MARKER = 128257
49
+ EOS_TOKEN = 128258
50
+ AUDIO_TOKEN_OFFSET = 128266 # to subtract from token→audio code
51
+
52
  def prepare_inputs(text: str, voice: str):
53
  prompt = f"{voice}: {text}"
54
+ in_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
55
+ start = torch.tensor([[START_TOKEN]], dtype=torch.int64, device=device)
56
+ end = torch.tensor([END_TOKENS], dtype=torch.int64, device=device)
57
+ ids = torch.cat([start, in_ids, end], dim=1)
58
+ mask = torch.ones_like(ids)
59
  return ids, mask
60
 
61
+ def decode_seven(tokens: list[int]) -> bytes:
62
+ """Take exactly 7 audio‑codes, build SNAC input and decode to PCM16 bytes."""
 
63
  b = tokens
64
+ l1 = [ b[0] ]
65
+ l2 = [ b[1] - 1*4096, b[4] - 4*4096 ]
66
+ l3 = [ b[2] - 2*4096, b[3] - 3*4096, b[5] - 5*4096, b[6] - 6*4096 ]
 
 
 
 
67
  codes = [
68
  torch.tensor(l1, device=device).unsqueeze(0),
69
  torch.tensor(l2, device=device).unsqueeze(0),
70
  torch.tensor(l3, device=device).unsqueeze(0),
71
  ]
72
  audio = snac.decode(codes).squeeze().cpu().numpy()
73
+ pcm16 = (audio * 32767).astype("int16").tobytes()
74
+ return pcm16
75
 
76
+ # — WEBSOCKET ENDPOINT
77
  @app.websocket("/ws/tts")
78
  async def tts_ws(ws: WebSocket):
79
  await ws.accept()
80
  try:
81
+ # 1) receive JSON request
82
  msg = await ws.receive_text()
83
  req = json.loads(msg)
84
  text = req.get("text", "")
85
  voice = req.get("voice", "Jakob")
86
 
87
+ # 2) prepare prompt
88
  input_ids, attention_mask = prepare_inputs(text, voice)
89
+ prompt_len = input_ids.size(1)
 
 
 
 
 
90
 
91
+ # 3) chunked generation setup
92
+ past_kvs = None
93
+ buffer: list[int] = []
94
+ generated_offset = 0
95
 
96
  while True:
97
+ # 4) generate up to 50 new tokens at a time
98
  out = model.generate(
99
+ input_ids= input_ids if past_kvs is None else None,
100
  attention_mask=attention_mask if past_kvs is None else None,
101
+ max_new_tokens=50,
102
  do_sample=True,
103
  temperature=0.7,
104
  top_p=0.95,
105
  repetition_penalty=1.1,
106
+ eos_token_id=EOS_TOKEN,
107
+ pad_token_id=EOS_TOKEN,
108
  use_cache=True,
109
+ return_dict_in_generate=False,
110
+ return_legacy_cache=True,
111
+ past_key_values=past_kvs,
112
  )
113
+ # out is a tuple: (generated_ids, new_past_kvs)
114
+ gen_ids, past_kvs = out
115
+
116
+ # 5) extract only newly generated tokens
117
+ seq = gen_ids[0]
118
+ new_seq = seq[prompt_len + generated_offset :]
119
+ generated_offset += new_seq.size(0)
120
+
121
+ # 6) process each new token
122
+ stop = False
123
+ for t in new_seq.tolist():
124
+ if t == EOS_TOKEN:
125
+ stop = True
 
126
  break
127
+ if t == RESET_MARKER:
128
+ buffer.clear()
129
  continue
130
+ # convert to audio-code
131
+ buffer.append(t - AUDIO_TOKEN_OFFSET)
132
+ # once we have 7 codes, decode & stream
133
+ if len(buffer) >= 7:
134
+ block = buffer[:7]
135
+ buffer = buffer[7:]
136
+ pcm_bytes = decode_seven(block)
137
+ await ws.send_bytes(pcm_bytes)
138
+ if stop:
 
 
139
  break
140
 
141
+ # 7) clean close
 
 
 
142
  await ws.close()
143
+
144
  except WebSocketDisconnect:
145
+ pass
146
  except Exception as e:
147
  print("Error in /ws/tts:", e)
148
  await ws.close(code=1011)