Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -12,18 +12,18 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
12 |
if HF_TOKEN:
|
13 |
login(HF_TOKEN)
|
14 |
|
15 |
-
# — Device
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
# — FastAPI instanziieren —
|
19 |
app = FastAPI()
|
20 |
|
21 |
-
# — Hello‑Route, damit
|
22 |
@app.get("/")
|
23 |
async def read_root():
|
24 |
return {"message": "Hello, world!"}
|
25 |
|
26 |
-
# — Modelle
|
27 |
@app.on_event("startup")
|
28 |
async def load_models():
|
29 |
global tokenizer, model, snac
|
@@ -34,99 +34,122 @@ async def load_models():
|
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
model_name,
|
37 |
-
device_map=
|
38 |
-
torch_dtype=torch.bfloat16 if device
|
39 |
low_cpu_mem_usage=True
|
40 |
-
)
|
41 |
-
# Pad‑ID auf EOS einstellen
|
42 |
model.config.pad_token_id = model.config.eos_token_id
|
43 |
|
44 |
-
# —
|
45 |
def prepare_inputs(text: str, voice: str):
|
46 |
prompt = f"{voice}: {text}"
|
47 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
48 |
-
# Start‑/End‑Marker
|
49 |
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
50 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
51 |
ids = torch.cat([start, input_ids, end], dim=1)
|
52 |
-
mask = torch.ones_like(ids)
|
53 |
return ids, mask
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
b =
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
codes = [
|
67 |
-
torch.tensor(
|
68 |
-
torch.tensor(
|
69 |
-
torch.tensor(
|
70 |
]
|
71 |
-
# ergibt FloatTensor shape (1, N), @24 kHz
|
72 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
73 |
-
# in PCM16 umwandeln
|
74 |
return (audio * 32767).astype("int16").tobytes()
|
75 |
|
76 |
-
# — WebSocket
|
77 |
@app.websocket("/ws/tts")
|
78 |
async def tts_ws(ws: WebSocket):
|
79 |
await ws.accept()
|
80 |
try:
|
81 |
-
#
|
82 |
msg = await ws.receive_text()
|
83 |
req = json.loads(msg)
|
84 |
text = req.get("text", "")
|
85 |
voice = req.get("voice", "Jakob")
|
86 |
|
87 |
-
# Inputs bauen
|
88 |
input_ids, attention_mask = prepare_inputs(text, voice)
|
89 |
past_kvs = None
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
# Token‑für‑Token loop
|
93 |
while True:
|
94 |
-
out = model(
|
95 |
-
input_ids=input_ids
|
96 |
attention_mask=attention_mask if past_kvs is None else None,
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
use_cache=True,
|
|
|
|
|
|
|
99 |
)
|
100 |
-
|
101 |
past_kvs = out.past_key_values
|
|
|
|
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
#
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
break
|
110 |
-
# Reset bei neuem Start‑Marker
|
111 |
-
if nxt == 128257:
|
112 |
-
collected = []
|
113 |
-
continue
|
114 |
-
|
115 |
-
# Audio‑Code offsetten und sammeln
|
116 |
-
collected.append(nxt - 128266)
|
117 |
-
# sobald 7 Stück, direkt dekodieren und senden
|
118 |
-
if len(collected) == 7:
|
119 |
-
pcm = decode_block(collected)
|
120 |
-
collected = []
|
121 |
-
await ws.send_bytes(pcm)
|
122 |
-
|
123 |
-
# nach Ende sauber schließen
|
124 |
-
await ws.close()
|
125 |
|
|
|
|
|
|
|
|
|
|
|
126 |
except WebSocketDisconnect:
|
127 |
-
|
128 |
-
pass
|
129 |
except Exception as e:
|
130 |
-
# bei Fehlern 1011 senden
|
131 |
print("Error in /ws/tts:", e)
|
132 |
await ws.close(code=1011)
|
|
|
|
|
|
|
|
|
|
|
|
12 |
if HF_TOKEN:
|
13 |
login(HF_TOKEN)
|
14 |
|
15 |
+
# — Device auswählen —
|
16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
|
18 |
# — FastAPI instanziieren —
|
19 |
app = FastAPI()
|
20 |
|
21 |
+
# — Hello‑Route, damit GET / nicht 404 gibt —
|
22 |
@app.get("/")
|
23 |
async def read_root():
|
24 |
return {"message": "Hello, world!"}
|
25 |
|
26 |
+
# — Modelle beim Startup laden —
|
27 |
@app.on_event("startup")
|
28 |
async def load_models():
|
29 |
global tokenizer, model, snac
|
|
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
36 |
model_name,
|
37 |
+
device_map="auto" if device=="cuda" else None,
|
38 |
+
torch_dtype=torch.bfloat16 if device=="cuda" else None,
|
39 |
low_cpu_mem_usage=True
|
40 |
+
).to(device)
|
|
|
41 |
model.config.pad_token_id = model.config.eos_token_id
|
42 |
|
43 |
+
# — Input‑Vorbereitung —
|
44 |
def prepare_inputs(text: str, voice: str):
|
45 |
prompt = f"{voice}: {text}"
|
46 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
|
|
47 |
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
|
48 |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
|
49 |
ids = torch.cat([start, input_ids, end], dim=1)
|
50 |
+
mask = torch.ones_like(ids, device=device)
|
51 |
return ids, mask
|
52 |
|
53 |
+
# — SNAC‑Dekodierung eines 7‑Token‑Blocks →
|
54 |
+
def decode_block(tokens: list[int]) -> bytes:
|
55 |
+
l1, l2, l3 = [], [], []
|
56 |
+
b = tokens
|
57 |
+
l1.append(b[0])
|
58 |
+
l2.append(b[1]-4096)
|
59 |
+
l3.append(b[2]-2*4096)
|
60 |
+
l3.append(b[3]-3*4096)
|
61 |
+
l2.append(b[4]-4*4096)
|
62 |
+
l3.append(b[5]-5*4096)
|
63 |
+
l3.append(b[6]-6*4096)
|
64 |
codes = [
|
65 |
+
torch.tensor(l1, device=device).unsqueeze(0),
|
66 |
+
torch.tensor(l2, device=device).unsqueeze(0),
|
67 |
+
torch.tensor(l3, device=device).unsqueeze(0),
|
68 |
]
|
|
|
69 |
audio = snac.decode(codes).squeeze().cpu().numpy()
|
|
|
70 |
return (audio * 32767).astype("int16").tobytes()
|
71 |
|
72 |
+
# — WebSocket‑Endpoint mit Chunked‑Generate (max_new_tokens=50) —
|
73 |
@app.websocket("/ws/tts")
|
74 |
async def tts_ws(ws: WebSocket):
|
75 |
await ws.accept()
|
76 |
try:
|
77 |
+
# 1) Anfrage einlesen
|
78 |
msg = await ws.receive_text()
|
79 |
req = json.loads(msg)
|
80 |
text = req.get("text", "")
|
81 |
voice = req.get("voice", "Jakob")
|
82 |
|
83 |
+
# 2) Inputs bauen
|
84 |
input_ids, attention_mask = prepare_inputs(text, voice)
|
85 |
past_kvs = None
|
86 |
+
buffer_codes: list[int] = []
|
87 |
+
|
88 |
+
# 3) Chunk‑Generate‑Loop
|
89 |
+
chunk_size = 50
|
90 |
+
eos_id = model.config.eos_token_id
|
91 |
+
|
92 |
+
# Wir tracken bisher erzeugte Länge, um abzugrenzen, was neu ist
|
93 |
+
prev_len = 0
|
94 |
|
|
|
95 |
while True:
|
96 |
+
out = model.generate(
|
97 |
+
input_ids = input_ids if past_kvs is None else None,
|
98 |
attention_mask=attention_mask if past_kvs is None else None,
|
99 |
+
max_new_tokens=chunk_size,
|
100 |
+
do_sample=True,
|
101 |
+
temperature=0.7,
|
102 |
+
top_p=0.95,
|
103 |
+
repetition_penalty=1.1,
|
104 |
+
eos_token_id=eos_id,
|
105 |
use_cache=True,
|
106 |
+
return_dict_in_generate=True,
|
107 |
+
output_scores=False,
|
108 |
+
past_key_values=past_kvs
|
109 |
)
|
110 |
+
# Update past_kvs und sequences
|
111 |
past_kvs = out.past_key_values
|
112 |
+
seqs = out.sequences # (1, total_length)
|
113 |
+
total_len = seqs.shape[1]
|
114 |
|
115 |
+
# 4) Neue Tokens extrahieren
|
116 |
+
new_tokens = seqs[0, prev_len:total_len].tolist()
|
117 |
+
prev_len = total_len
|
118 |
|
119 |
+
# 5) Jeden neuen Token aufbereiten
|
120 |
+
for tok in new_tokens:
|
121 |
+
if tok == eos_id:
|
122 |
+
# Ende
|
123 |
+
new_tokens = [] # clean up
|
124 |
+
break
|
125 |
+
if tok == 128257:
|
126 |
+
buffer_codes.clear()
|
127 |
+
continue
|
128 |
+
# offset und puffern
|
129 |
+
buffer_codes.append(tok - 128266)
|
130 |
+
# sobald 7 Codes gesammelt, dekodieren & senden
|
131 |
+
if len(buffer_codes) >= 7:
|
132 |
+
block = buffer_codes[:7]
|
133 |
+
buffer_codes = buffer_codes[7:]
|
134 |
+
pcm = decode_block(block)
|
135 |
+
await ws.send_bytes(pcm)
|
136 |
+
|
137 |
+
# 6) Abbruch, wenn EOS im Chunk war
|
138 |
+
if eos_id in new_tokens:
|
139 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
# Inputs für nächsten Durchgang nur beim ersten Mal
|
142 |
+
input_ids = attention_mask = None
|
143 |
+
|
144 |
+
# 7) Zum Schluss sauber schließen
|
145 |
+
await ws.close()
|
146 |
except WebSocketDisconnect:
|
147 |
+
return
|
|
|
148 |
except Exception as e:
|
|
|
149 |
print("Error in /ws/tts:", e)
|
150 |
await ws.close(code=1011)
|
151 |
+
|
152 |
+
# — Main für lokalen Test —
|
153 |
+
if __name__ == "__main__":
|
154 |
+
import uvicorn
|
155 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|