Tomtom84 commited on
Commit
d9ea17d
·
verified ·
1 Parent(s): fd06e70

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -109
app.py CHANGED
@@ -1,144 +1,138 @@
1
  import os
2
  import json
3
- import asyncio
4
-
5
  import torch
 
6
  from fastapi import FastAPI, WebSocket, WebSocketDisconnect
7
  from huggingface_hub import login
8
- from snac import SNAC
9
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
10
 
11
- # — ENV & AUTH
12
- HF_TOKEN = os.getenv("HF_TOKEN", "")
13
  if HF_TOKEN:
14
  login(HF_TOKEN)
15
 
16
- # — DEVICE SETUP
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
 
19
- # — FASTAPI INSTANCE —
20
  app = FastAPI()
21
 
22
- # — HEALTHCHECK / ROOT —
23
  @app.get("/")
24
  async def read_root():
25
- return {"message": "TTS WebSocket up and running!"}
26
 
27
- # — LOAD MODELS ON STARTUP
 
 
 
 
 
28
  @app.on_event("startup")
29
- async def startup_event():
30
- global tokenizer, model, snac
31
- # 1) SNAC vocoder
32
- snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
33
- # 2) TTS model & tokenizer
34
- model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
35
- tokenizer = AutoTokenizer.from_pretrained(model_name)
36
  model = AutoModelForCausalLM.from_pretrained(
37
- model_name,
38
- device_map="auto",
39
- torch_dtype=torch.bfloat16 if device == "cuda" else None,
40
  low_cpu_mem_usage=True
41
- )
42
- # make pad == eos
43
  model.config.pad_token_id = model.config.eos_token_id
44
 
45
- # — HELPERS
46
- START_TOKEN = 128259
47
- END_TOKENS = [128009, 128260]
48
- RESET_MARKER = 128257
49
- EOS_TOKEN = 128258
50
- AUDIO_TOKEN_OFFSET = 128266 # to subtract from token→audio code
51
-
52
- def prepare_inputs(text: str, voice: str):
53
- prompt = f"{voice}: {text}"
54
- in_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
55
- start = torch.tensor([[START_TOKEN]], dtype=torch.int64, device=device)
56
- end = torch.tensor([END_TOKENS], dtype=torch.int64, device=device)
57
- ids = torch.cat([start, in_ids, end], dim=1)
58
- mask = torch.ones_like(ids)
59
- return ids, mask
60
-
61
- def decode_seven(tokens: list[int]) -> bytes:
62
- """Take exactly 7 audio‑codes, build SNAC input and decode to PCM16 bytes."""
63
- b = tokens
64
- l1 = [ b[0] ]
65
- l2 = [ b[1] - 1*4096, b[4] - 4*4096 ]
66
- l3 = [ b[2] - 2*4096, b[3] - 3*4096, b[5] - 5*4096, b[6] - 6*4096 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  codes = [
68
- torch.tensor(l1, device=device).unsqueeze(0),
69
- torch.tensor(l2, device=device).unsqueeze(0),
70
- torch.tensor(l3, device=device).unsqueeze(0),
71
  ]
72
- audio = snac.decode(codes).squeeze().cpu().numpy()
73
- pcm16 = (audio * 32767).astype("int16").tobytes()
74
- return pcm16
75
 
76
- # — WEBSOCKET ENDPOINT
77
  @app.websocket("/ws/tts")
78
  async def tts_ws(ws: WebSocket):
79
  await ws.accept()
80
  try:
81
- # 1) receive JSON request
82
  msg = await ws.receive_text()
83
  req = json.loads(msg)
84
  text = req.get("text", "")
85
- voice = req.get("voice", "Jakob")
86
-
87
- # 2) prepare prompt
88
- input_ids, attention_mask = prepare_inputs(text, voice)
89
- prompt_len = input_ids.size(1)
90
-
91
- # 3) chunked generation setup
92
- past_kvs = None
93
- buffer: list[int] = []
94
- generated_offset = 0
95
-
96
- while True:
97
- # 4) generate up to 50 new tokens at a time
98
- out = model.generate(
99
- input_ids= input_ids if past_kvs is None else None,
100
- attention_mask=attention_mask if past_kvs is None else None,
101
- max_new_tokens=50,
102
- do_sample=True,
103
- temperature=0.7,
104
- top_p=0.95,
105
- repetition_penalty=1.1,
106
- eos_token_id=EOS_TOKEN,
107
- pad_token_id=EOS_TOKEN,
108
- use_cache=True,
109
- return_dict_in_generate=False,
110
- return_legacy_cache=True,
111
- past_key_values=past_kvs,
112
- )
113
- # out is a tuple: (generated_ids, new_past_kvs)
114
- gen_ids, past_kvs = out
115
-
116
- # 5) extract only newly generated tokens
117
- seq = gen_ids[0]
118
- new_seq = seq[prompt_len + generated_offset :]
119
- generated_offset += new_seq.size(0)
120
-
121
- # 6) process each new token
122
- stop = False
123
- for t in new_seq.tolist():
124
- if t == EOS_TOKEN:
125
- stop = True
126
- break
127
- if t == RESET_MARKER:
128
- buffer.clear()
129
- continue
130
- # convert to audio-code
131
- buffer.append(t - AUDIO_TOKEN_OFFSET)
132
- # once we have 7 codes, decode & stream
133
- if len(buffer) >= 7:
134
- block = buffer[:7]
135
- buffer = buffer[7:]
136
- pcm_bytes = decode_seven(block)
137
- await ws.send_bytes(pcm_bytes)
138
- if stop:
139
- break
140
-
141
- # 7) clean close
142
  await ws.close()
143
 
144
  except WebSocketDisconnect:
@@ -146,3 +140,7 @@ async def tts_ws(ws: WebSocket):
146
  except Exception as e:
147
  print("Error in /ws/tts:", e)
148
  await ws.close(code=1011)
 
 
 
 
 
1
  import os
2
  import json
 
 
3
  import torch
4
+ import numpy as np
5
  from fastapi import FastAPI, WebSocket, WebSocketDisconnect
6
  from huggingface_hub import login
 
7
  from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ from snac import SNAC
9
 
10
+ # — HF‑Token & Login (wenn gesetzt)
11
+ HF_TOKEN = os.getenv("HF_TOKEN")
12
  if HF_TOKEN:
13
  login(HF_TOKEN)
14
 
15
+ # — Device wählen
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
17
 
 
18
  app = FastAPI()
19
 
 
20
  @app.get("/")
21
  async def read_root():
22
+ return {"message": "Hello, world!"}
23
 
24
+ # — Globale Modelle
25
+ model = None
26
+ tokenizer = None
27
+ snac_model = None
28
+
29
+ # — Startup: SNAC & Orpheus laden —
30
  @app.on_event("startup")
31
+ async def load_models():
32
+ global model, tokenizer, snac_model
33
+ # 1) SNAC
34
+ snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
35
+ # 2) Orpheus‑TTS
36
+ REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_synthetic-v0.1"
37
+ tokenizer = AutoTokenizer.from_pretrained(REPO)
38
  model = AutoModelForCausalLM.from_pretrained(
39
+ REPO,
40
+ device_map="auto" if device=="cuda" else None,
41
+ torch_dtype=torch.bfloat16 if device=="cuda" else None,
42
  low_cpu_mem_usage=True
43
+ ).to(device)
 
44
  model.config.pad_token_id = model.config.eos_token_id
45
 
46
+ # — Marker und Offsets aus der Vorlage
47
+ START_TOKEN = 128259
48
+ END_TOKENS = [128009, 128260]
49
+ AUDIO_OFFSET = 128266
50
+
51
+ def process_single_prompt(prompt: str, voice: str) -> list[int]:
52
+ # Prompt zusammenbauen
53
+ if voice and voice != "in_prompt":
54
+ text = f"{voice}: {prompt}"
55
+ else:
56
+ text = prompt
57
+ # Tokenize + Marker
58
+ ids = tokenizer(text, return_tensors="pt").input_ids
59
+ start = torch.tensor([[START_TOKEN]], dtype=torch.int64)
60
+ end = torch.tensor([END_TOKENS], dtype=torch.int64)
61
+ input_ids = torch.cat([start, ids, end], dim=1).to(device)
62
+ attention_mask = torch.ones_like(input_ids)
63
+
64
+ # Generieren
65
+ gen = model.generate(
66
+ input_ids=input_ids,
67
+ attention_mask=attention_mask,
68
+ max_new_tokens=4000,
69
+ do_sample=True,
70
+ temperature=0.6,
71
+ top_p=0.95,
72
+ repetition_penalty=1.1,
73
+ eos_token_id=128258,
74
+ use_cache=True,
75
+ )
76
+
77
+ # letzten START_TOKEN finden & croppen
78
+ token_to_find = 128257
79
+ token_to_remove = 128258
80
+ idxs = (gen == token_to_find).nonzero(as_tuple=True)[1]
81
+ if idxs.numel() > 0:
82
+ cropped = gen[:, idxs[-1] + 1 :]
83
+ else:
84
+ cropped = gen
85
+
86
+ # Padding entfernen
87
+ row = cropped[0][cropped[0] != token_to_remove]
88
+ # Aus Länge ein Vielfaches von 7 machen
89
+ new_len = (row.size(0) // 7) * 7
90
+ trimmed = row[:new_len].tolist()
91
+ # Offset abziehen
92
+ return [t - AUDIO_OFFSET for t in trimmed]
93
+
94
+ def redistribute_codes(code_list: list[int]) -> np.ndarray:
95
+ # Die 7er‑Blöcke auf 3 Layer verteilen und dekodieren
96
+ layer1, layer2, layer3 = [], [], []
97
+ for i in range(len(code_list) // 7):
98
+ b = code_list[7*i : 7*i+7]
99
+ layer1.append(b[0])
100
+ layer2.append(b[1] - 4096)
101
+ layer3.append(b[2] - 2*4096)
102
+ layer3.append(b[3] - 3*4096)
103
+ layer2.append(b[4] - 4*4096)
104
+ layer3.append(b[5] - 5*4096)
105
+ layer3.append(b[6] - 6*4096)
106
+
107
  codes = [
108
+ torch.tensor(layer1, device=device).unsqueeze(0),
109
+ torch.tensor(layer2, device=device).unsqueeze(0),
110
+ torch.tensor(layer3, device=device).unsqueeze(0),
111
  ]
112
+ audio = snac_model.decode(codes).squeeze().cpu().numpy()
113
+ return audio # float32 @24 kHz
 
114
 
115
+ # — WebSocket‑Endpoint für TTS
116
  @app.websocket("/ws/tts")
117
  async def tts_ws(ws: WebSocket):
118
  await ws.accept()
119
  try:
120
+ # 1) Text + Voice empfangen
121
  msg = await ws.receive_text()
122
  req = json.loads(msg)
123
  text = req.get("text", "")
124
+ voice = req.get("voice", "")
125
+
126
+ # 2) Prompt → Code‑Liste
127
+ with torch.no_grad():
128
+ codes = process_single_prompt(text, voice)
129
+ audio_np = redistribute_codes(codes)
130
+
131
+ # 3) In PCM16 konvertieren und senden
132
+ pcm16 = (audio_np * 32767).astype(np.int16).tobytes()
133
+ await ws.send_bytes(pcm16)
134
+
135
+ # 4) sauber schließen
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
  await ws.close()
137
 
138
  except WebSocketDisconnect:
 
140
  except Exception as e:
141
  print("Error in /ws/tts:", e)
142
  await ws.close(code=1011)
143
+
144
+ if __name__ == "__main__":
145
+ import uvicorn
146
+ uvicorn.run("app:app", host="0.0.0.0", port=7860)