Spaces:
Paused
Paused
up5
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
import asyncio
|
|
|
4 |
import torch
|
5 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
6 |
from dotenv import load_dotenv
|
@@ -8,74 +9,78 @@ from snac import SNAC
|
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from huggingface_hub import login, snapshot_download
|
10 |
|
11 |
-
#
|
12 |
load_dotenv()
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
if HF_TOKEN:
|
15 |
login(token=HF_TOKEN)
|
16 |
|
17 |
-
#
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
#
|
21 |
-
print("Loading SNAC model
|
22 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
23 |
|
24 |
-
# βββ ORPHEUS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
25 |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
26 |
-
|
27 |
-
# preβdownload only the config + safetensors, damit das Image schlank bleibt
|
28 |
snapshot_download(
|
29 |
repo_id=model_name,
|
30 |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
31 |
ignore_patterns=[
|
32 |
"optimizer.pt", "pytorch_model.bin", "training_args.bin",
|
33 |
-
"scheduler.pt", "tokenizer
|
|
|
34 |
]
|
35 |
)
|
36 |
|
37 |
-
print("Loading Orpheus model
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
39 |
model_name,
|
40 |
-
torch_dtype=torch.bfloat16
|
41 |
-
)
|
42 |
-
model = model.to(device)
|
43 |
model.config.pad_token_id = model.config.eos_token_id
|
44 |
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
|
47 |
-
#
|
48 |
|
49 |
def process_prompt(text: str, voice: str):
|
50 |
-
"""
|
51 |
-
Baut aus Text+Voice ein batchβTensor input_ids fΓΌr `model.generate`.
|
52 |
-
"""
|
53 |
prompt = f"{voice}: {text}"
|
54 |
-
|
55 |
-
start = torch.tensor([[128259]],
|
56 |
-
end = torch.tensor([[128009, 128260]],
|
57 |
-
|
|
|
|
|
58 |
|
59 |
def parse_output(generated_ids: torch.LongTensor):
|
60 |
-
"""
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
idxs = (generated_ids ==
|
65 |
if idxs.numel() > 0:
|
66 |
-
|
|
|
67 |
else:
|
68 |
cropped = generated_ids
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
|
72 |
def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
73 |
"""
|
74 |
-
Verteilt 7erβ
|
|
|
75 |
"""
|
|
|
76 |
layer1, layer2, layer3 = [], [], []
|
77 |
-
|
78 |
-
|
|
|
79 |
layer1.append(base[0])
|
80 |
layer2.append(base[1] - 4096)
|
81 |
layer3.append(base[2] - 2*4096)
|
@@ -83,6 +88,11 @@ def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
|
83 |
layer2.append(base[4] - 4*4096)
|
84 |
layer3.append(base[5] - 5*4096)
|
85 |
layer3.append(base[6] - 6*4096)
|
|
|
|
|
|
|
|
|
|
|
86 |
dev = next(snac_model.parameters()).device
|
87 |
codes = [
|
88 |
torch.tensor(layer1, device=dev).unsqueeze(0),
|
@@ -92,31 +102,32 @@ def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
|
92 |
audio = snac_model.decode(codes)
|
93 |
return audio.detach().squeeze().cpu().numpy()
|
94 |
|
95 |
-
#
|
96 |
|
97 |
app = FastAPI()
|
98 |
|
99 |
@app.get("/")
|
100 |
-
|
101 |
-
return {"
|
102 |
|
103 |
@app.websocket("/ws/tts")
|
104 |
async def tts_ws(ws: WebSocket):
|
105 |
await ws.accept()
|
106 |
try:
|
107 |
while True:
|
108 |
-
#
|
109 |
data = json.loads(await ws.receive_text())
|
110 |
text = data.get("text", "")
|
111 |
voice = data.get("voice", "Jakob")
|
112 |
|
113 |
-
#
|
114 |
-
ids = process_prompt(text, voice)
|
115 |
|
116 |
-
#
|
117 |
gen_ids = model.generate(
|
118 |
input_ids=ids,
|
119 |
-
|
|
|
120 |
do_sample=True,
|
121 |
temperature=0.7,
|
122 |
top_p=0.95,
|
@@ -124,25 +135,24 @@ async def tts_ws(ws: WebSocket):
|
|
124 |
eos_token_id=model.config.eos_token_id,
|
125 |
)
|
126 |
|
127 |
-
#
|
128 |
-
codes
|
129 |
audio_np = redistribute_codes(codes, snac)
|
130 |
|
131 |
-
#
|
132 |
pcm16 = (audio_np * 32767).astype("int16").tobytes()
|
133 |
-
chunk = 2400 * 2
|
134 |
for i in range(0, len(pcm16), chunk):
|
135 |
await ws.send_bytes(pcm16[i : i+chunk])
|
136 |
await asyncio.sleep(0.1)
|
137 |
|
|
|
138 |
except WebSocketDisconnect:
|
139 |
print("Client disconnected")
|
140 |
except Exception as e:
|
141 |
print("Error in /ws/tts:", e)
|
142 |
await ws.close(code=1011)
|
143 |
|
144 |
-
# βββ START ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
145 |
-
|
146 |
if __name__ == "__main__":
|
147 |
import uvicorn
|
148 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import asyncio
|
4 |
+
import numpy as np
|
5 |
import torch
|
6 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
7 |
from dotenv import load_dotenv
|
|
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
from huggingface_hub import login, snapshot_download
|
11 |
|
12 |
+
# β ENV & HFβAUTH β
|
13 |
load_dotenv()
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
if HF_TOKEN:
|
16 |
login(token=HF_TOKEN)
|
17 |
|
18 |
+
# β Device β
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
+
# β Modelle laden β
|
22 |
+
print("Loading SNAC model...")
|
23 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
24 |
|
|
|
25 |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
26 |
+
print("Downloading model weights (config + safetensors)...")
|
|
|
27 |
snapshot_download(
|
28 |
repo_id=model_name,
|
29 |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
30 |
ignore_patterns=[
|
31 |
"optimizer.pt", "pytorch_model.bin", "training_args.bin",
|
32 |
+
"scheduler.pt", "tokenizer.json", "tokenizer_config.json",
|
33 |
+
"special_tokens_map.json", "vocab.json", "merges.txt", "tokenizer.*"
|
34 |
]
|
35 |
)
|
36 |
|
37 |
+
print("Loading Orpheus model...")
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
39 |
model_name,
|
40 |
+
torch_dtype=torch.bfloat16
|
41 |
+
).to(device)
|
|
|
42 |
model.config.pad_token_id = model.config.eos_token_id
|
43 |
|
44 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
|
46 |
+
# β Hilfsfunktionen β
|
47 |
|
48 |
def process_prompt(text: str, voice: str):
|
49 |
+
"""Bereitet input_ids und attention_mask fΓΌr das Modell vor."""
|
|
|
|
|
50 |
prompt = f"{voice}: {text}"
|
51 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
52 |
+
start = torch.tensor([[128259]], dtype=torch.int64)
|
53 |
+
end = torch.tensor([[128009, 128260]], dtype=torch.int64)
|
54 |
+
ids = torch.cat([start, input_ids, end], dim=1).to(device)
|
55 |
+
mask = torch.ones_like(ids).to(device)
|
56 |
+
return ids, mask
|
57 |
|
58 |
def parse_output(generated_ids: torch.LongTensor):
|
59 |
+
"""Extrahiere rohe Tokenliste nach dem letzten 128257-Start-Token."""
|
60 |
+
token_to_find = 128257
|
61 |
+
token_to_remove = 128258
|
62 |
+
|
63 |
+
idxs = (generated_ids == token_to_find).nonzero(as_tuple=True)[1]
|
64 |
if idxs.numel() > 0:
|
65 |
+
cut = idxs[-1].item() + 1
|
66 |
+
cropped = generated_ids[:, cut:]
|
67 |
else:
|
68 |
cropped = generated_ids
|
69 |
+
|
70 |
+
# Entferne EOSβToken
|
71 |
+
row = cropped[0]
|
72 |
+
return row[row != token_to_remove].tolist()
|
73 |
|
74 |
def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
75 |
"""
|
76 |
+
Verteilt die Token nur in kompletten 7erβBlΓΆcken auf die drei SNACβLayer
|
77 |
+
und dekodiert in Audio. UnvollstΓ€ndige Reste (<7 Tokens) werden verworfen.
|
78 |
"""
|
79 |
+
n_blocks = len(code_list) // 7
|
80 |
layer1, layer2, layer3 = [], [], []
|
81 |
+
|
82 |
+
for i in range(n_blocks):
|
83 |
+
base = code_list[7*i : 7*i + 7]
|
84 |
layer1.append(base[0])
|
85 |
layer2.append(base[1] - 4096)
|
86 |
layer3.append(base[2] - 2*4096)
|
|
|
88 |
layer2.append(base[4] - 4*4096)
|
89 |
layer3.append(base[5] - 5*4096)
|
90 |
layer3.append(base[6] - 6*4096)
|
91 |
+
|
92 |
+
if not layer1:
|
93 |
+
# kein kompletter Block β leeres Audio
|
94 |
+
return np.zeros(0, dtype=np.float32)
|
95 |
+
|
96 |
dev = next(snac_model.parameters()).device
|
97 |
codes = [
|
98 |
torch.tensor(layer1, device=dev).unsqueeze(0),
|
|
|
102 |
audio = snac_model.decode(codes)
|
103 |
return audio.detach().squeeze().cpu().numpy()
|
104 |
|
105 |
+
# β FastAPI Setup β
|
106 |
|
107 |
app = FastAPI()
|
108 |
|
109 |
@app.get("/")
|
110 |
+
def greet_json():
|
111 |
+
return {"Hello": "World!"}
|
112 |
|
113 |
@app.websocket("/ws/tts")
|
114 |
async def tts_ws(ws: WebSocket):
|
115 |
await ws.accept()
|
116 |
try:
|
117 |
while True:
|
118 |
+
# Erwartet JSON: {"text": "...", "voice": "Jakob"}
|
119 |
data = json.loads(await ws.receive_text())
|
120 |
text = data.get("text", "")
|
121 |
voice = data.get("voice", "Jakob")
|
122 |
|
123 |
+
# 1) Tokens vorbereiten
|
124 |
+
ids, mask = process_prompt(text, voice)
|
125 |
|
126 |
+
# 2) Generierung
|
127 |
gen_ids = model.generate(
|
128 |
input_ids=ids,
|
129 |
+
attention_mask=mask,
|
130 |
+
max_new_tokens=2000, # hier nach Bedarf anpassen
|
131 |
do_sample=True,
|
132 |
temperature=0.7,
|
133 |
top_p=0.95,
|
|
|
135 |
eos_token_id=model.config.eos_token_id,
|
136 |
)
|
137 |
|
138 |
+
# 3) Tokens β Code-Liste β Audio
|
139 |
+
codes = parse_output(gen_ids)
|
140 |
audio_np = redistribute_codes(codes, snac)
|
141 |
|
142 |
+
# 4) in 0.1sβStΓΌcken PCM16 streamen
|
143 |
pcm16 = (audio_np * 32767).astype("int16").tobytes()
|
144 |
+
chunk = 2400 * 2 # 2400 samples @24kHz = 0.1s * 2 bytes
|
145 |
for i in range(0, len(pcm16), chunk):
|
146 |
await ws.send_bytes(pcm16[i : i+chunk])
|
147 |
await asyncio.sleep(0.1)
|
148 |
|
149 |
+
# Ende der whileβSchleife
|
150 |
except WebSocketDisconnect:
|
151 |
print("Client disconnected")
|
152 |
except Exception as e:
|
153 |
print("Error in /ws/tts:", e)
|
154 |
await ws.close(code=1011)
|
155 |
|
|
|
|
|
156 |
if __name__ == "__main__":
|
157 |
import uvicorn
|
158 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|