Spaces:
Paused
Paused
up4
Browse files
app.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
-
import os
|
|
|
|
|
2 |
import torch
|
3 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
4 |
from dotenv import load_dotenv
|
@@ -6,87 +8,141 @@ from snac import SNAC
|
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from huggingface_hub import login, snapshot_download
|
8 |
|
|
|
9 |
load_dotenv()
|
10 |
-
|
11 |
-
|
|
|
12 |
|
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
-
|
|
|
16 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
17 |
|
|
|
18 |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
|
|
|
|
19 |
snapshot_download(
|
20 |
repo_id=model_name,
|
21 |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
22 |
-
ignore_patterns=[
|
23 |
-
|
|
|
|
|
24 |
)
|
25 |
|
26 |
-
print("Loading Orpheusβ¦")
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
model_name,
|
29 |
-
torch_dtype=torch.bfloat16
|
30 |
)
|
31 |
model = model.to(device)
|
32 |
model.config.pad_token_id = model.config.eos_token_id
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
|
36 |
-
#
|
37 |
|
38 |
def process_prompt(text: str, voice: str):
|
|
|
|
|
|
|
39 |
prompt = f"{voice}: {text}"
|
40 |
-
|
41 |
start = torch.tensor([[128259]], device=device)
|
42 |
end = torch.tensor([[128009, 128260]], device=device)
|
43 |
-
return torch.cat([start,
|
44 |
|
45 |
-
def parse_output(
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return row.tolist()
|
51 |
|
52 |
-
def redistribute_codes(
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
app = FastAPI()
|
57 |
|
58 |
@app.get("/")
|
59 |
-
async def
|
60 |
-
return {"status":"ok","msg":"Hello, Orpheus TTS up!"}
|
61 |
|
62 |
@app.websocket("/ws/tts")
|
63 |
-
async def
|
64 |
await ws.accept()
|
65 |
try:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
except WebSocketDisconnect:
|
85 |
-
print("Client
|
86 |
except Exception as e:
|
87 |
-
print("Error in /ws/tts:",e)
|
88 |
await ws.close(code=1011)
|
89 |
|
90 |
-
|
|
|
|
|
91 |
import uvicorn
|
92 |
-
uvicorn.run("app:app",host="0.0.0.0",port=7860)
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import asyncio
|
4 |
import torch
|
5 |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
6 |
from dotenv import load_dotenv
|
|
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
from huggingface_hub import login, snapshot_download
|
10 |
|
11 |
+
# βββ ENV & HF TOKEN ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
12 |
load_dotenv()
|
13 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
+
if HF_TOKEN:
|
15 |
+
login(token=HF_TOKEN)
|
16 |
|
17 |
+
# βββ DEVICE βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
+
# βββ SNAC βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
21 |
+
print("Loading SNAC modelβ¦")
|
22 |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
|
23 |
|
24 |
+
# βββ ORPHEUS ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
25 |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
|
26 |
+
|
27 |
+
# preβdownload only the config + safetensors, damit das Image schlank bleibt
|
28 |
snapshot_download(
|
29 |
repo_id=model_name,
|
30 |
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json"],
|
31 |
+
ignore_patterns=[
|
32 |
+
"optimizer.pt", "pytorch_model.bin", "training_args.bin",
|
33 |
+
"scheduler.pt", "tokenizer.*", "vocab.json", "merges.txt"
|
34 |
+
]
|
35 |
)
|
36 |
|
37 |
+
print("Loading Orpheus modelβ¦")
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
39 |
model_name,
|
40 |
+
torch_dtype=torch.bfloat16 # optional: beschleunigt das FP16βΓ€hnliche Rechnen
|
41 |
)
|
42 |
model = model.to(device)
|
43 |
model.config.pad_token_id = model.config.eos_token_id
|
44 |
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
|
47 |
+
# βββ HILFSFUNKTIONEN ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
48 |
|
49 |
def process_prompt(text: str, voice: str):
|
50 |
+
"""
|
51 |
+
Baut aus Text+Voice ein batchβTensor input_ids fΓΌr `model.generate`.
|
52 |
+
"""
|
53 |
prompt = f"{voice}: {text}"
|
54 |
+
tok = tokenizer(prompt, return_tensors="pt").to(device)
|
55 |
start = torch.tensor([[128259]], device=device)
|
56 |
end = torch.tensor([[128009, 128260]], device=device)
|
57 |
+
return torch.cat([start, tok.input_ids, end], dim=1)
|
58 |
|
59 |
+
def parse_output(generated_ids: torch.LongTensor):
|
60 |
+
"""
|
61 |
+
Schneidet bis zum letzten 128257 und entfernt 128258, gibt reine TokenβListe zurΓΌck.
|
62 |
+
"""
|
63 |
+
START, PAD = 128257, 128258
|
64 |
+
idxs = (generated_ids == START).nonzero(as_tuple=True)[1]
|
65 |
+
if idxs.numel() > 0:
|
66 |
+
cropped = generated_ids[:, idxs[-1].item()+1:]
|
67 |
+
else:
|
68 |
+
cropped = generated_ids
|
69 |
+
row = cropped[0][cropped[0] != PAD]
|
70 |
return row.tolist()
|
71 |
|
72 |
+
def redistribute_codes(code_list: list[int], snac_model: SNAC):
|
73 |
+
"""
|
74 |
+
Verteilt 7erβBlΓΆcke auf die drei SNACβLayer und dekodiert zu Audio (numpy float32).
|
75 |
+
"""
|
76 |
+
layer1, layer2, layer3 = [], [], []
|
77 |
+
for i in range((len(code_list) + 1) // 7):
|
78 |
+
base = code_list[7*i : 7*i+7]
|
79 |
+
layer1.append(base[0])
|
80 |
+
layer2.append(base[1] - 4096)
|
81 |
+
layer3.append(base[2] - 2*4096)
|
82 |
+
layer3.append(base[3] - 3*4096)
|
83 |
+
layer2.append(base[4] - 4*4096)
|
84 |
+
layer3.append(base[5] - 5*4096)
|
85 |
+
layer3.append(base[6] - 6*4096)
|
86 |
+
dev = next(snac_model.parameters()).device
|
87 |
+
codes = [
|
88 |
+
torch.tensor(layer1, device=dev).unsqueeze(0),
|
89 |
+
torch.tensor(layer2, device=dev).unsqueeze(0),
|
90 |
+
torch.tensor(layer3, device=dev).unsqueeze(0),
|
91 |
+
]
|
92 |
+
audio = snac_model.decode(codes)
|
93 |
+
return audio.detach().squeeze().cpu().numpy()
|
94 |
+
|
95 |
+
# βββ FASTAPI βββββββοΏ½οΏ½οΏ½ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
96 |
|
97 |
app = FastAPI()
|
98 |
|
99 |
@app.get("/")
|
100 |
+
async def healthcheck():
|
101 |
+
return {"status": "ok", "msg": "Hello, Orpheus TTS up!"}
|
102 |
|
103 |
@app.websocket("/ws/tts")
|
104 |
+
async def tts_ws(ws: WebSocket):
|
105 |
await ws.accept()
|
106 |
try:
|
107 |
+
while True:
|
108 |
+
# 1) Eintreffende JSONβNachricht parsen
|
109 |
+
data = json.loads(await ws.receive_text())
|
110 |
+
text = data.get("text", "")
|
111 |
+
voice = data.get("voice", "Jakob")
|
112 |
+
|
113 |
+
# 2) Prompt β input_ids
|
114 |
+
ids = process_prompt(text, voice)
|
115 |
+
|
116 |
+
# 3) TokenβErzeugung
|
117 |
+
gen_ids = model.generate(
|
118 |
+
input_ids=ids,
|
119 |
+
max_new_tokens=2000, # hier z.B. 20k geht auch, wird aber speicherintensiv
|
120 |
+
do_sample=True,
|
121 |
+
temperature=0.7,
|
122 |
+
top_p=0.95,
|
123 |
+
repetition_penalty=1.1,
|
124 |
+
eos_token_id=model.config.eos_token_id,
|
125 |
+
)
|
126 |
+
|
127 |
+
# 4) Tokens β CodeβListe β Audio
|
128 |
+
codes = parse_output(gen_ids)
|
129 |
+
audio_np = redistribute_codes(codes, snac)
|
130 |
+
|
131 |
+
# 5) PCM16βStream in 0.1βsβBlΓΆcken
|
132 |
+
pcm16 = (audio_np * 32767).astype("int16").tobytes()
|
133 |
+
chunk = 2400 * 2
|
134 |
+
for i in range(0, len(pcm16), chunk):
|
135 |
+
await ws.send_bytes(pcm16[i : i+chunk])
|
136 |
+
await asyncio.sleep(0.1)
|
137 |
+
|
138 |
except WebSocketDisconnect:
|
139 |
+
print("Client disconnected")
|
140 |
except Exception as e:
|
141 |
+
print("Error in /ws/tts:", e)
|
142 |
await ws.close(code=1011)
|
143 |
|
144 |
+
# βββ START ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
145 |
+
|
146 |
+
if __name__ == "__main__":
|
147 |
import uvicorn
|
148 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, log_level="info")
|