Tomtom84's picture
Update app.py
d9ea17d verified
raw
history blame
4.42 kB
import os
import json
import torch
import numpy as np
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer
from snac import SNAC
# — HF‑Token & Login (wenn gesetzt) —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
# — Device wählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
app = FastAPI()
@app.get("/")
async def read_root():
return {"message": "Hello, world!"}
# — Globale Modelle —
model = None
tokenizer = None
snac_model = None
# — Startup: SNAC & Orpheus laden —
@app.on_event("startup")
async def load_models():
global model, tokenizer, snac_model
# 1) SNAC
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# 2) Orpheus‑TTS
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_synthetic-v0.1"
tokenizer = AutoTokenizer.from_pretrained(REPO)
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map="auto" if device=="cuda" else None,
torch_dtype=torch.bfloat16 if device=="cuda" else None,
low_cpu_mem_usage=True
).to(device)
model.config.pad_token_id = model.config.eos_token_id
# — Marker und Offsets aus der Vorlage —
START_TOKEN = 128259
END_TOKENS = [128009, 128260]
AUDIO_OFFSET = 128266
def process_single_prompt(prompt: str, voice: str) -> list[int]:
# Prompt zusammenbauen
if voice and voice != "in_prompt":
text = f"{voice}: {prompt}"
else:
text = prompt
# Tokenize + Marker
ids = tokenizer(text, return_tensors="pt").input_ids
start = torch.tensor([[START_TOKEN]], dtype=torch.int64)
end = torch.tensor([END_TOKENS], dtype=torch.int64)
input_ids = torch.cat([start, ids, end], dim=1).to(device)
attention_mask = torch.ones_like(input_ids)
# Generieren
gen = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=4000,
do_sample=True,
temperature=0.6,
top_p=0.95,
repetition_penalty=1.1,
eos_token_id=128258,
use_cache=True,
)
# letzten START_TOKEN finden & croppen
token_to_find = 128257
token_to_remove = 128258
idxs = (gen == token_to_find).nonzero(as_tuple=True)[1]
if idxs.numel() > 0:
cropped = gen[:, idxs[-1] + 1 :]
else:
cropped = gen
# Padding entfernen
row = cropped[0][cropped[0] != token_to_remove]
# Aus Länge ein Vielfaches von 7 machen
new_len = (row.size(0) // 7) * 7
trimmed = row[:new_len].tolist()
# Offset abziehen
return [t - AUDIO_OFFSET for t in trimmed]
def redistribute_codes(code_list: list[int]) -> np.ndarray:
# Die 7er‑Blöcke auf 3 Layer verteilen und dekodieren
layer1, layer2, layer3 = [], [], []
for i in range(len(code_list) // 7):
b = code_list[7*i : 7*i+7]
layer1.append(b[0])
layer2.append(b[1] - 4096)
layer3.append(b[2] - 2*4096)
layer3.append(b[3] - 3*4096)
layer2.append(b[4] - 4*4096)
layer3.append(b[5] - 5*4096)
layer3.append(b[6] - 6*4096)
codes = [
torch.tensor(layer1, device=device).unsqueeze(0),
torch.tensor(layer2, device=device).unsqueeze(0),
torch.tensor(layer3, device=device).unsqueeze(0),
]
audio = snac_model.decode(codes).squeeze().cpu().numpy()
return audio # float32 @24 kHz
# — WebSocket‑Endpoint für TTS —
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
# 1) Text + Voice empfangen
msg = await ws.receive_text()
req = json.loads(msg)
text = req.get("text", "")
voice = req.get("voice", "")
# 2) Prompt → Code‑Liste
with torch.no_grad():
codes = process_single_prompt(text, voice)
audio_np = redistribute_codes(codes)
# 3) In PCM16 konvertieren und senden
pcm16 = (audio_np * 32767).astype(np.int16).tobytes()
await ws.send_bytes(pcm16)
# 4) sauber schließen
await ws.close()
except WebSocketDisconnect:
pass
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)