Spaces:
Paused
Paused
import os | |
import json | |
import asyncio | |
import torch | |
from fastapi import FastAPI, WebSocket, WebSocketDisconnect | |
from huggingface_hub import login | |
from snac import SNAC | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# — HF‑Token & Login — | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN: | |
login(HF_TOKEN) | |
# — Device auswählen — | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# — FastAPI instanziieren — | |
app = FastAPI() | |
# — Hello‑Route, damit GET / nicht 404 gibt — | |
async def read_root(): | |
return {"message": "Hello, world!"} | |
# — Modelle beim Startup laden — | |
async def load_models(): | |
global tokenizer, model, snac | |
# SNAC laden | |
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device) | |
# TTS‑Modell laden | |
model_name = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
device_map="auto" if device=="cuda" else None, | |
torch_dtype=torch.bfloat16 if device=="cuda" else None, | |
low_cpu_mem_usage=True | |
).to(device) | |
model.config.pad_token_id = model.config.eos_token_id | |
# — Input‑Vorbereitung — | |
def prepare_inputs(text: str, voice: str): | |
prompt = f"{voice}: {text}" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) | |
start = torch.tensor([[128259]], dtype=torch.int64, device=device) | |
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device) | |
ids = torch.cat([start, input_ids, end], dim=1) | |
mask = torch.ones_like(ids, device=device) | |
return ids, mask | |
# — SNAC‑Dekodierung eines 7‑Token‑Blocks → | |
def decode_block(tokens: list[int]) -> bytes: | |
l1, l2, l3 = [], [], [] | |
b = tokens | |
l1.append(b[0]) | |
l2.append(b[1]-4096) | |
l3.append(b[2]-2*4096) | |
l3.append(b[3]-3*4096) | |
l2.append(b[4]-4*4096) | |
l3.append(b[5]-5*4096) | |
l3.append(b[6]-6*4096) | |
codes = [ | |
torch.tensor(l1, device=device).unsqueeze(0), | |
torch.tensor(l2, device=device).unsqueeze(0), | |
torch.tensor(l3, device=device).unsqueeze(0), | |
] | |
audio = snac.decode(codes).squeeze().cpu().numpy() | |
return (audio * 32767).astype("int16").tobytes() | |
# — WebSocket‑Endpoint mit Chunked‑Generate (max_new_tokens=50) — | |
async def tts_ws(ws: WebSocket): | |
await ws.accept() | |
try: | |
# 1) Anfrage einlesen | |
msg = await ws.receive_text() | |
req = json.loads(msg) | |
text = req.get("text", "") | |
voice = req.get("voice", "Jakob") | |
# 2) Inputs bauen | |
input_ids, attention_mask = prepare_inputs(text, voice) | |
past_kvs = None | |
buffer_codes: list[int] = [] | |
# 3) Chunk‑Generate‑Loop | |
chunk_size = 50 | |
eos_id = model.config.eos_token_id | |
# Wir tracken bisher erzeugte Länge, um abzugrenzen, was neu ist | |
prev_len = 0 | |
while True: | |
out = model.generate( | |
input_ids = input_ids if past_kvs is None else None, | |
attention_mask=attention_mask if past_kvs is None else None, | |
max_new_tokens=chunk_size, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95, | |
repetition_penalty=1.1, | |
eos_token_id=eos_id, | |
use_cache=True, | |
return_dict_in_generate=True, | |
output_scores=False, | |
past_key_values=past_kvs | |
) | |
# Update past_kvs und sequences | |
past_kvs = out.past_key_values | |
seqs = out.sequences # (1, total_length) | |
total_len = seqs.shape[1] | |
# 4) Neue Tokens extrahieren | |
new_tokens = seqs[0, prev_len:total_len].tolist() | |
prev_len = total_len | |
# 5) Jeden neuen Token aufbereiten | |
for tok in new_tokens: | |
if tok == eos_id: | |
# Ende | |
new_tokens = [] # clean up | |
break | |
if tok == 128257: | |
buffer_codes.clear() | |
continue | |
# offset und puffern | |
buffer_codes.append(tok - 128266) | |
# sobald 7 Codes gesammelt, dekodieren & senden | |
if len(buffer_codes) >= 7: | |
block = buffer_codes[:7] | |
buffer_codes = buffer_codes[7:] | |
pcm = decode_block(block) | |
await ws.send_bytes(pcm) | |
# 6) Abbruch, wenn EOS im Chunk war | |
if eos_id in new_tokens: | |
break | |
# Inputs für nächsten Durchgang nur beim ersten Mal | |
input_ids = attention_mask = None | |
# 7) Zum Schluss sauber schließen | |
await ws.close() | |
except WebSocketDisconnect: | |
return | |
except Exception as e: | |
print("Error in /ws/tts:", e) | |
await ws.close(code=1011) | |
# — Main für lokalen Test — | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run("app:app", host="0.0.0.0", port=7860) | |