Tomtom84's picture
Update app.py
a4cfefc verified
raw
history blame
5.67 kB
import os
import json
import asyncio
import torch
# Bugfix für PyTorch 2.2.x Flash‑SDP‑Assertion
torch.backends.cuda.enable_flash_sdp(False)
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from huggingface_hub import login
from snac import SNAC
from transformers import AutoModelForCausalLM, AutoTokenizer
# — HF‑Token & Login —
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
# — Device wählen —
device = "cuda" if torch.cuda.is_available() else "cpu"
# — FastAPI instanzieren —
app = FastAPI()
# — Hello‑Route, damit GET / kein 404 mehr gibt —
@app.get("/")
async def read_root():
return {"message": "Orpheus TTS WebSocket Server läuft"}
# — Modelle beim Startup laden —
@app.on_event("startup")
async def load_models():
global tokenizer, model, snac
# SNAC für Audio‑Decoding
snac = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to(device)
# Orpheus‑TTS Base
REPO = "SebastianBodza/Kartoffel_Orpheus-3B_german_natural-v0.1"
tokenizer = AutoTokenizer.from_pretrained(REPO)
model = AutoModelForCausalLM.from_pretrained(
REPO,
device_map={"": 0} if device=="cuda" else None,
torch_dtype=torch.bfloat16 if device=="cuda" else None,
low_cpu_mem_usage=True,
return_legacy_cache=True # für compatibility mit past_key_values als Tuple
).to(device)
model.config.pad_token_id = model.config.eos_token_id
# --- Logit‑Masking vorbereiten ---
# reine Audio‑Tokens laufen von 128266 bis 128266+4096-1
AUDIO_OFFSET = 128266
AUDIO_COUNT = 4096
valid_audio = torch.arange(AUDIO_OFFSET, AUDIO_OFFSET + AUDIO_COUNT, device=device)
ctrl_tokens = torch.tensor([128257, model.config.eos_token_id], device=device)
global ALLOWED_IDS
ALLOWED_IDS = torch.cat([valid_audio, ctrl_tokens])
def sample_from_logits(logits: torch.Tensor) -> int:
"""
Maskt alle IDs außer ALLOWED_IDS und sampelt dann einen Token.
"""
# logits: [1, vocab_size]
mask = torch.full_like(logits, float("-inf"))
mask[0, ALLOWED_IDS] = 0.0
probs = torch.softmax(logits + mask, dim=-1)
return torch.multinomial(probs, num_samples=1).item()
def prepare_inputs(text: str, voice: str):
prompt = f"{voice}: {text}"
ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
# Start‐/End‐Marker
start = torch.tensor([[128259]], dtype=torch.int64, device=device)
end = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device)
input_ids = torch.cat([start, ids, end], dim=1)
attention_mask = torch.ones_like(input_ids, device=device)
return input_ids, attention_mask
def decode_block(block: list[int]) -> bytes:
"""
Aus 7 gesampelten Audio‑Codes einen PCM‑16‑Byte‐Block dekodieren.
Hier erwarten wir block[i] = raw_token - 128266.
"""
layer1, layer2, layer3 = [], [], []
b = block
layer1.append(b[0])
layer2.append(b[1] - 4096)
layer3.append(b[2] - 2*4096)
layer3.append(b[3] - 3*4096)
layer2.append(b[4] - 4*4096)
layer3.append(b[5] - 5*4096)
layer3.append(b[6] - 6*4096)
dev = next(snac.parameters()).device
codes = [
torch.tensor(layer1, device=dev).unsqueeze(0),
torch.tensor(layer2, device=dev).unsqueeze(0),
torch.tensor(layer3, device=dev).unsqueeze(0),
]
audio = snac.decode(codes).squeeze().cpu().numpy()
# in PCM16 umwandeln
pcm16 = (audio * 32767).astype("int16").tobytes()
return pcm16
# — WebSocket Endpoint für TTS Streaming —
@app.websocket("/ws/tts")
async def tts_ws(ws: WebSocket):
await ws.accept()
try:
msg = await ws.receive_text()
req = json.loads(msg)
text = req.get("text", "")
voice = req.get("voice", "Jakob")
# Inputs vorbereiten
input_ids, attention_mask = prepare_inputs(text, voice)
past_kvs = None
buffer = [] # sammelt die 7 Audio‑Codes
# Token‑für‑Token Loop
while True:
out = model(
input_ids=input_ids if past_kvs is None else None,
attention_mask=attention_mask if past_kvs is None else None,
past_key_values=past_kvs,
use_cache=True,
return_dict=True
)
past_kvs = out.past_key_values
next_tok = sample_from_logits(out.logits[:, -1, :])
# Ende?
if next_tok == model.config.eos_token_id:
break
# Reset bei neuem Audio‑Block‑Start
if next_tok == 128257:
buffer.clear()
input_ids = torch.tensor([[next_tok]], device=device)
attention_mask = torch.ones_like(input_ids)
continue
# Audio‑Code sammeln (Offset abziehen)
buffer.append(next_tok - 128266)
# sobald wir 7 Codes haben → dekodieren & senden
if len(buffer) == 7:
pcm = decode_block(buffer)
buffer.clear()
await ws.send_bytes(pcm)
# nächster Schritt: genau diesen Token wieder einspeisen
input_ids = torch.tensor([[next_tok]], device=device)
attention_mask = torch.ones_like(input_ids)
# sauber beenden
await ws.close()
except WebSocketDisconnect:
pass
except Exception as e:
print("Error in /ws/tts:", e)
await ws.close(code=1011)
# — CLI zum lokalen Testen —
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860)